Strategies for Improving Cleaning and Disinfection of Environmental Surfaces in Healthcare Settings
Dr. John Boyce, Hospital of St. Raphael, Yale University
Sponsored by Virox Technologies Inc. (www.virox.com)

Strategies for Improving Cleaning and Disinfection of Environmental Surfaces in Healthcare Facilities

John M. Boyce, MD
Infectious Diseases Section, Hospital of Saint Raphael
Clinical Professor of Medicine, Yale University School of Medicine
New Haven, CT

Cleaning Practices Are Often Suboptimal
- Daily cleaning of surfaces near patients is often performed poorly
- Terminal cleaning of rooms after patient discharge is often inadequate
 - Carling et al. found that only 47% of surfaces targeted for terminal cleaning had been cleaned

Contaminated Surfaces Can Contribute to Transmission
- Patients admitted to a room formerly occupied by a patient with VRE or MRSA are at increased risk of acquiring the organism, suggesting that
 - terminal cleaning of rooms is inadequate
 - patients acquire the organism
 - directly from contaminated surfaces
 - from HCWs who contaminate their hands in the room

Reducing Environmental Contamination Reduces VRE Transmission
- Prospective, 9-month study in an MICU included
 - Admission and daily screening of patients
 - Environmental and HCW hand cultures twice weekly
- Study design included
 - Baseline period (1)
 - Education/monitoring/feedback for housekeepers (2)
 - Wash-out period with no specific intervention (3)
 - Multimodal hand hygiene intervention (4)

Environments Contamination
- Patients with pathogens such as MRSA, VRE, C. difficile and Acinetobacter frequently contaminate environmental surfaces in their immediate vicinity
- These organisms can remain viable in the environment for weeks or months

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Strategies for Improving Cleaning and Disinfection of Environmental Surfaces in Healthcare Settings
Dr. John Boyce, Hospital of St. Raphael, Yale University
Sponsored by Virox Technologies Inc. (www.virox.com)

Reducing Environmental Contamination Reduces VRE Transmission
- Environmental cleaning rate increased significantly
- VRE environmental contamination decreased significantly
- VRE acquisitions by patients decreased significantly
- Other factors analyzed could not explain decreased VRE acquisition rate

Evidence That Environmental Disinfection Reduces Transmission of C. difficile
- CDAD transmission decreased significantly on a high incidence ward after changing from quaternary ammonium to 1:10 solution of sodium hypochlorite (bleach)
- Incidence rose to initial level after a switch back to quaternary ammonium
- 1:10 hypochlorite did not reduce CDAD incidence on low-incidence wards

Evidence That Environmental Disinfection Reduces Transmission of C. difficile
- Hypochlorite disinfection was used in 2 ICUs with increased incidence of CDAD
 - Hypochlorite used in all patient rooms in one ICU
 - Hypochlorite was used in only rooms of patients with CDAD in the other ICU
- Incidence of CDAD decreased in both ICUs, and remained low for 1.5 years

Improving Cleaning/Disinfection Practices
- Based on increasing evidence,
 - CDC’s Healthcare Infection Control Practices Advisory Committee (HICPAC)
 - SHEA/IDSA Healthcare-Associated Infections Task Force
 - Have recommended that healthcare facilities pay greater attention to cleaning and disinfection of equipment and the environment

Factors Contributing to Suboptimal Cleaning/Disinfection Practices
- Housekeepers and nursing staff often do not agree on who should clean what
 - Which detergent/disinfectant to use
 - What concentration should be used
 - How often to change cleaning cloths/mop heads
- Other contributing factors
 - Demands for fast room “turnaround times”
 - Staff shortages and frequent turnover of personnel

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Strategies for Improving Cleaning and Disinfection of Environmental Surfaces in Healthcare Settings
Dr. John Boyce, Hospital of St. Raphael, Yale University
Sponsored by Virox Technologies Inc. (www.virox.com)

Monitoring Housekeeping Practices

- Were important surfaces wiped with appropriate disinfectant or detergent?
 - Checklist to be completed by housekeeper
 - Fluorescent dye marker placed by supervisor

- Is surface “clean”?
 - Visual assessment: does the surface look clean?
 - Aerobic colony counts
 - Time consuming; results available in 48 hrs
 - Adenosine triphosphate (ATP) bioluminescence assay
 - Results available immediately

Sherlock O et al. J Hosp Infect 2009

High-Touch Surface Checklist For Daily Cleaning

<table>
<thead>
<tr>
<th>Item</th>
<th>Daily Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedrails, bed frame</td>
<td></td>
</tr>
<tr>
<td>Overbed</td>
<td></td>
</tr>
<tr>
<td>TV remote control</td>
<td></td>
</tr>
<tr>
<td>Nurse call button</td>
<td></td>
</tr>
<tr>
<td>Telephone</td>
<td></td>
</tr>
<tr>
<td>Bathroom: grab bars</td>
<td></td>
</tr>
<tr>
<td>toilet seat</td>
<td></td>
</tr>
<tr>
<td>faucet handles</td>
<td></td>
</tr>
<tr>
<td>Light switches</td>
<td></td>
</tr>
<tr>
<td>Door handles</td>
<td></td>
</tr>
</tbody>
</table>

Fluorescent Dye Marker System for Monitoring Cleaning Practices

- Prospective study conducted in 3 hospitals
- 12 high-touch objects in patient rooms were marked with invisible fluorescent solution after terminal cleaning
 - Marks moistened by disinfectant spray could be removed by wiping surface for 5 seconds with light pressure

Carling PC et al Clin Infect Dis 2006;42:385

Monitoring Cleaning Practices

- After at least 2 patients had occupied the rooms and rooms had been terminally cleaned, target surfaces were evaluated using a portable UV light to see if the marker had been wiped off
- Education and feedback given to cleaning staff

Carling PC et al. Infect Control Hosp Epidemiol 2008;29:1

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Strategies for Improving Cleaning and Disinfection of Environmental Surfaces in Healthcare Settings

Dr. John Boyce, Hospital of St. Raphael, Yale University

Sponsored by Virox Technologies Inc. (www.virox.com)

Monitoring Cleaning Practices

- ATP bioluminescence methods have been used for years to monitor adequacy of cleaning procedures in beverage and food processing industries.
- Methods detect ATP from bacteria, human secretions, food.

 \[
 \text{Luciferase} + \text{D-Luciferin} + \text{O}_2 + \text{ATP} \\
 \text{Luciferase} + \text{oxy-luciferin} + \text{CO}_2 + \text{AMP} + \text{PPi} + \text{Light} \\
 \]
- Amount of light is proportional to concentration of ATP present.

Griffith CL et al. J Hosp Infect 2000;45:19

Trial of ATP Bioluminescence Assay System

- Prospective trial in community-teaching hospital.

 - Phase I: ATP bioluminescence method was used to sample 5 high-touch surfaces before/after daily cleaning in 20 rooms.
 – Housekeepers were unaware that cleaning was being monitored.

 - Phase II: ATP readings were obtained from same 5 high-touch surfaces before/after daily cleaning in 101 patient rooms on randomly selected nursing units hospital-wide.
 – Goal was to determine the range of ATP readings that could be achieved with reasonably good cleaning technique.
 – Housekeepers were told in advance that the room they were about to clean would be tested before and after daily cleaning.

Common Cleaning/Disinfection Methods

- Liquid disinfectants, or detergents:
 - Spray disinfectant on surface or cleaning cloth & wipe.
 - Soak clean cloth in disinfectant and wipe surface.
 - Use disinfectant-impregnated wipes.
 - “Bucket method”; cloth is soaked in disinfectant, used to drench surfaces, which are kept wet x 10 min; surfaces are wiped dry with clean cloth.

3M BioTrace ATP Bioluminescence Method

- Step 1: Use special swab to sample surface.
- Step 2: Place swab in reaction tube.
- Step 3: Place tube in luminometer.

Results: Relative Light Units

Median ATP Readings (RLUs) for 5 High-Touch Surfaces, Before and After Daily Cleaning in 20 Rooms

Median Relative Light Unit Readings, Before & After Daily Cleaning in Patient Rooms, Phase II

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Strategies for Improving Cleaning and Disinfection of Environmental Surfaces in Healthcare Settings
Dr. John Boyce, Hospital of St. Raphael, Yale University
Sponsored by Virox Technologies Inc. (www.virox.com)

Liquid Disinfectants
- Traditional liquid disinfectants
 - Quaternary ammonium compounds (most commonly used)
 - Phenolics
 - Alcohols or alcohol-based mixtures
 - Chlorine-releasing products
- New or experimental liquid disinfectants
 - Accelerated hydrogen peroxide
 - Silver ion zeolite technology
 - Immobilized polymeric bicocide + insoluble silver salt
 - Organosilane formulation
 - Cationic ingredient + chlorhexidine
 - Copper-based disinfectants

Disinfection Methods for *C. difficile* and Norovirus outbreaks
- In units with high rate of *C. difficile*-associated disease, use 1:10 dilution of household bleach for routine environmental disinfection
 - Currently, no products are EPA-registered specifically for inactivating *C. difficile* spores
 - EPA is evaluating a sodium hypochlorite product for use against *C. difficile* spores, and will likely approve

- Common surfaces disinfectants have poor activity against Norovirus
 - Dilute household bleach solution is recommended

Accelerated hydrogen peroxide
- Accelerated hydrogen peroxide liquid formulation
- Bactericidal and virucidal in 1 min and mycobactericidal and fungicidal in 5 min
- More desirable side effects profile than quaternary ammonium-based disinfectants; is more expensive
- Gained popularity in Canada
 - Used by 24% of hospitals in one small Canadian survey

Vapor-Phase Disinfectants (Fumigants)
- Vapor-phase disinfectants
 - β-propiolactone
 - Ethylene oxide
 - Methyl bromide
 - Ozone
 - Formaldehyde gas *
 - Chlorine dioxide gas *
 - Hydrogen peroxide vapor *

* Used for remediation (decontamination) of equipment or buildings after 2001 anthrax attack

McAnoy AM: Vaporous Decontamination Methods
Australian Government DSTO 2006

Hydrogen Peroxide Vapor
- 2 main hydrogen peroxide vapor technologies are commercially available
 - Micro-condensation process (BIOQUELL)
 - “Dry gas” process (Steris)
- Despite differences in method of application, both technologies have been validated as effective
 - Most experience in healthcare settings is with the micro-condensation process

McAnoy AM: Vaporous Decontamination Methods,
Australian Government DSTO 2006
Fisher J et al. Pharmaceutical Technology 2004, pg. 68

Hydrogen Peroxide Vapor Micro-Condensation Process
- Hydrogen peroxide vapor micro-condensation process (Bioquell) has been used in hospitals with epidemic or endemic problems with MRSA, VRE, *C. difficile*, Acinetobacter or other multidrug-resistant Gram negative pathogens
- Effective against a broad range of healthcare-associated pathogens including *C. difficile* spores

Passaretti C et al. 2009 IDSA/ICAAC meeting, Abstr K-4124b
Dryden M et al. J Hosp Infect 2006;68:190

A Webber Training Teleclass
Hosted by Paul Webber
paul@webbertraining.com
www.webbertraining.com
Strategies for Improving Cleaning and Disinfection of Environmental Surfaces in Healthcare Settings
Dr. John Boyce, Hospital of St. Raphael, Yale University
Sponsored by Virox Technologies Inc. (www.virox.com)

Impact of Hydrogen Peroxide Vapor (HPV) Room Decontamination on Environmental Contamination and Nosocomial Transmission by Clostridium difficile
- A 10-month prospective trial at Hospital of Saint Raphael
- Collaborators: CDC and BIOQUELL PLC
- Pre- and post-intervention study design
- HPV was injected into sealed patient rooms using HPV generators until a c. 1micron film of HPV was applied
- HPV is then catalytically converted to oxygen and water vapor by an aeration unit
- Cycle time: 12 hrs for entire ward or 3 - 4 hrs for a patient room; current cycle times are 2.3 to 3 hrs
Boyce JM et al. Infect Control Hosp Epidemiol 2008;29:723

Microbiologic Efficacy of HPV Decontamination

<table>
<thead>
<tr>
<th>Before HPV</th>
<th>After HPV</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Swab Cultures</td>
<td># of Cultures (+) for Cdiff</td>
</tr>
<tr>
<td>165</td>
<td>4</td>
</tr>
</tbody>
</table>

(2.4%) (5%) (14%)

of Sponges Cultured | # of Sponges (+) for Cdiff | # of Sponges Cultured | # of Sponges (+) for Cdiff |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>11</td>
<td>25.6%</td>
<td>37</td>
</tr>
</tbody>
</table>

Conclusion: HPV is efficacious in eradicating Cdiff, MRSA and VRE from environmental surfaces

Impact of HPV Decontamination on Incidence of New Nosocomial CDAD Cases

Reduction in rate: 39%
Reduction in rate: 53%

Boyce JM et al. Infect Control Hosp Epidemiol 2008;29:723

Hydrogen Peroxide “Dry-Mist” System
- Hydrogen peroxide “dry mist” system (Sterinis) injects particles of 8 – 12 microns into room
- Disinfectant contains 5% H₂O₂ + silver ions + phosphoric acid
- Has shown reduction in bacterial contamination in experimental and actual hospital rooms
- Appears to be less efficacious against C. difficile spores than hydrogen peroxide vapor

Bartels MD et al. J Hosp Infect 2008;70:35
Shapey S et al. J Hosp Infect 2008;70:136

Alcohol/Quaternary Ammonium Mist System
- Disinfectant is sprayed onto surfaces; evaporates quickly so no wiping of surfaces is required
- Disinfectant contains 58.6% alcohol + 4-chain quaternary ammonium suspended in carbon dioxide carrier (Biomist); non-flammable
- Significantly reduced VRE and MRSA on hospital surfaces
- No data on C. difficile spores
- Not as consistently effective as 1:10 solution of bleach

Jury LA et al. 2009 SHEA meeting, abstr 278

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Other Area Decontamination Strategies

- Ultraviolet Light Surface Decontamination (Lumalier Tru-D)
- Gaseous ozone
 - Berrington AW J Hosp Infect 1998
 - Sharma M et al. AJIC 2008;36:559
- Super-oxidized water fogging
- Quaternary ammonium “dry mist” system (Zimek)
 - No published studies or data on C. difficile spores

Summary

- Improving cleaning/disinfection practices in hospitals requires
 - Developing detailed protocols, educating housekeepers
 - Monitoring cleaning, providing feedback to housekeepers
- Methods of monitoring the adequacy of cleaning
 - Checklists
 - Using fluorescent markers
 - ATP bioluminescence methods
 - Surface cultures (colony counts)
- New liquid disinfectants, some with persistent activity, are becoming available and warrant further evaluation
- Hydrogen peroxide vapor, mobile UV light systems, and other new area decontamination systems warrant further evaluation to determine their effectiveness and impact on transmission of healthcare-associated pathogens

Summary

- Issues to consider when evaluating liquid disinfectants or area decontamination systems
 - Effectiveness against
 - bacteria, including C. difficile spores
 - viruses, including non-enveloped viruses like Norovirus
 - Ease of application
 - Speed of action or room turn-around time
 - Materials compatibility
 - Adverse effects on housekeepers, patients, environment
 - Impact on pathogen transmission
 - Cost

Selected Guidelines

- HICPAC Environmental guideline
 [www.cdc.gov/ncidod/dhqp/pdf/guidelines/Enviro_guide_03.pdf]
- HICPAC MDRO guideline
- HICPAC Disinfection and Sterilization guideline
- Canadian Hand Hygiene, Disinfection & Sterilization guideline
 [www.phac-aspc.gc.ca/publicat/ccdr-rmtc/98pdf/cdrt44e.pdf]

The Next Few Teleclasses

- 21 Apr. 09: Free British Teleclass Voices of the IPS
 Speaker: IPS Board Members and Guests
- 23 Apr. 09: Economic and Health Benefits of Universal MRSA Screening
 Speaker: Prof. Stephen Hazeneth, University of Arizona Hospitals
- 29 Apr. 09: South Pacific Teleclass Cost of Healthcare in the Southern Hemisphere
 Speaker: Dr. David Hamner, Canberra District Health Laboratories
 Speaker: Bruce Gorman, British Columbia Provincial Infection Control Network
- 19 May. 09: British Teleclass Human Papilloma Virus (HPV) and Vaccination
 Speaker: Dr. Tito Lopez, British Gynaecological Society
- 21 May. 09: The Importance of Health Care Worker and Infection Risk
 Speaker: Prof. Scotti Teitelman, University of Illinois Medical School

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com