How to Assess Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection & Sterilization Principles

Dr. Bill Rutala, University of North Carolina
Sponsored by Virox Technologies www.virox.com

How To Assess Disease Transmission When There Is A Failure to Follow Recommended Disinfection and Sterilization Principles

William A. Rutala, Ph.D., M.P.H.
University of North Carolina (UNC) Health Care System and UNC at Chapel Hill, NC

Failure to Follow Disinfection and Sterilization Principles

- Overview of disinfection and sterilization principles
- Failure Scenarios
- Recommended Protocol for Exposure Evaluation

Failure to Follow Disinfection and Sterilization Principles

- Overview
 - Achieving disinfection and sterilization through the use of disinfection and sterilization practices is essential for ensuring that medical and surgical instruments do not transmit pathogens to patients
 - Deficiencies leading to infection have occurred when there has been failure to follow disinfection and sterilization principles
 - These failures resulted from human error, equipment failures or system problems
 - Discuss a 14 step method for managing a failure incident

Disinfection and Sterilization Principles

Disinfection and Sterilization

EH Spaulding believed that how an object will be disinfected depended on the object’s intended use.
CRITICAL - objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile.
SEMICRITICAL - objects that touch mucous membranes or skin that is not intact require a disinfection process [high-level disinfection (HLD)] that kills all microorganisms but high numbers of bacterial spores.
NONCRITICAL - objects that touch only intact skin require low-level disinfection.

Efficacy of Disinfection/Sterilization Influencing Factors

Cleaning of the object
Organic and inorganic load present
Type and level of microbial contamination
Concentration of and exposure time to disinfectant/sterilant
Nature of the object
Temperature and relative humidity

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Critical Patient Care Objects

<table>
<thead>
<tr>
<th>Processing “Critical” Patient Care Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification: Critical objects enter normally sterile tissue or vascular system, or through which blood flows.</td>
</tr>
<tr>
<td>Object: Sterility</td>
</tr>
<tr>
<td>Level germicidal action: Kill all microorganisms, including bacterial spores.</td>
</tr>
<tr>
<td>Examples: Surgical instruments and devices; cardiac catheters; implants; etc.</td>
</tr>
<tr>
<td>Method: Steam, gas, hydrogen peroxide plasma or chemical sterilization.</td>
</tr>
</tbody>
</table>

Critical Objects

- Surgical instruments
- Cardiac catheters
- Implants

Recommendations

Methods of Sterilization

- Steam is preferred for critical items not damaged by heat
- Follow the operating parameters recommended by the manufacturer
- Use low temperature sterilization technologies for reprocessing critical items damaged by heat
- Use immediately critical items that have been sterilized by peracetic acid immersion process (no long term storage)

Chemical Sterilization of “Critical Objects”

- Glutaraldehyde (≥ 2.0%)
- Hydrogen peroxide-HP (7.5%)
- Peracetic acid-PA (0.2%)
- HP (1.0%) and PA (0.08%)
- HP (7.5%) and PA (0.23%)
- Glut (1.12%) and Phenol/phenate (1.93%)

Semicritical Patient Care Objects

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com Page 2
How to Assess Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection & Sterilization Principles

Dr. Bill Rutala, University of North Carolina
Sponsored by Virox Technologies www.virox.com

Processing “Semicritical” Patient Care Objects

- **Classification:** Semicritical objects come in contact with mucous membranes or skin that is not intact.
- **Object:** Free of all microorganisms except high numbers of bacterial spores.
- **Level germicidal action:** Kills all microorganisms except high numbers of bacterial spores.
- **Examples:** Respiratory therapy and anesthesia equipment, GI endoscopes, thermometer, etc.
- **Method:** High-level disinfection

Semicritical Items

- Endoscopes
- Respiratory therapy equipment
- Anesthesia equipment
- Endocavitary probes
- Tonometers
- Diaphragm fitting rings

High Level Disinfection of “Semicritical Objects”

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde</td>
<td>≥ 2.0%</td>
</tr>
<tr>
<td>Ortho-phthalaldehyde (12 m)</td>
<td>0.56%</td>
</tr>
<tr>
<td>Hydrogen peroxide*</td>
<td>7.5%</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>1.0%/0.08%</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>7.5%/0.23%</td>
</tr>
<tr>
<td>Hypochlorite (free chlorine)*</td>
<td>650-675 ppm</td>
</tr>
<tr>
<td>Glut and phenol/phenate**</td>
<td>1.21%/1.93%</td>
</tr>
</tbody>
</table>

*May cause cosmetic and functional damage; **efficacy not verified

Noncritical Patient Care Objects

- **Processing “Noncritical” Patient Care Objects**

- **Classification:** Noncritical objects will not come in contact with mucous membranes or skin that is not intact.
- **Object:** Can be expected to be contaminated with some microorganisms.
- **Level germicidal action:** Kill vegetative bacteria, fungi and lipid viruses.
- **Examples:** Bedpans; crutches; bed rails; EKG leads; bedside tables; walls, floors and furniture.
- **Method:** Low-level disinfection

Low-Level Disinfection for “Noncritical” Objects

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Use Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl or isopropyl alcohol</td>
<td>70-90% dilution</td>
</tr>
<tr>
<td>Chlorine</td>
<td>100ppm (1:500 dilution)</td>
</tr>
<tr>
<td>Phenolic</td>
<td>UD</td>
</tr>
<tr>
<td>Iodophor</td>
<td>UD</td>
</tr>
<tr>
<td>Quaternary ammonium</td>
<td>UD</td>
</tr>
</tbody>
</table>

UD=Manufacturer’s recommended use dilution
Point-of-use system, no long-term storage
Material used to wrap the item/tray. Once the expiration date is exceeded the pack should be reprocessed.

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
How to Assess Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection & Sterilization Principles

Dr. Bill Rutala, University of North Carolina
Sponsored by Virox Technologies www.virox.com

Disinfection and Sterilization of Emerging Pathogens

- Hepatitis C virus
- Clostridium difficile
- Cryptosporidium
- Helicobacter pylori
- E.coli 0157:H7
- Antibiotic-resistant microbes (MDR-TB, VRE, MRSA)
- SARS Coronavirus, avian influenza, norovirus
- Bioterrorism agents (anthrax, plague, smallpox)

Disinfection and Sterilization of
Emerging Pathogens

Standard disinfection and sterilization procedures for patient care equipment are adequate to sterilize or disinfect instruments or devices contaminated with blood and other body fluids from persons infected with emerging pathogens.

Creutzfeldt Jakob Disease (CJD):
Disinfection and Sterilization

Epidemiology of CJD in the US

- Degenerative neurologic disorder
- CJD (a prion) incidence
 - One death/million population
 - No seasonal distribution, no geographic aggregation
 - Both genders equally affected
 - Age range 50-80+ years, average 67
- Long incubation, rapid disease progression after onset
- Prions resistant to conventional disinfection/sterilization

Decreasing Order of Resistance of Microorganisms to Disinfectants/Sterilants

Prions
Spores
Mycobacteria
Non-Enveloped Viruses
Fungi
Bacteria
Enveloped Viruses

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
CJD and Medical Devices

- Six cases of CJD associated with medical devices
 - 2 confirmed cases: depth electrodes; reprocessed by benzene, alcohol and formaldehyde vapor
 - 4 cases: CJD following brain surgery, index CJD identified: 1, suspect neurosurgical instruments
- Cases occurred before 1980 in Europe
- No cases since 1980 and no known failure of steam sterilization

CJD: Disinfection and Sterilization

- Critical/SC-cleaning with special prion reprocessing
 - NaOH and steam sterilization (e.g., 1N NaOH 1h, 121°C 30 m)
 - 134°C for 18m (prevacuum)
 - 132°C for 60m (gravity)
- No low temperature sterilization technology effective*
- Noncritical four disinfectants (e.g., chlorine, Environ LpH) effective (4 log decrease in LD50 within 1h)
*VHP reduced infectivity by 4.5 logs (Lancet 2004;364:521)

CJD: Disinfection and Sterilization

- Epidemiologic evidence suggest nosocomial CJD transmission via medical devices is very rare
- Guidelines based on epidemiologic evidence, tissue infectivity, risk of disease via medical devices, and inactivation data
- Risk assessment based on patient, tissue and device
- Only critical/semicritical devices contaminated with high-risk tissue (brain, eye, spinal cord) from high risk patients (suspected CJD) requires special treatment

Endoscopes/AERS

Murphy Was an ICP!

Murphy’s Law

“Whatever can go wrong will go wrong”

Corollary

“...in the worst possible way at the worst possible time”

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
GI endoscopes and bronchoscopes

- Widely used diagnostic and therapeutic procedure
- Endoscope contamination during use (GI 10^9 in/10^5 out)
- Semicritical items require high-level disinfection minimally
- Inappropriate cleaning and disinfection has lead to cross-transmission
- In the inanimate environment, although the incidence remains very low, endoscopes represent a risk of disease transmission

Transmission of infection

- Gastrointestinal endoscopy
 - >300 infections transmitted
 - 70% agents Salmonella sp. and P. aeruginosa
 - Clinical spectrum ranged from colonization to death (~4%)
- Bronchoscopy
 - 90 infections transmitted
 - M. tuberculosis, atypical Mycobacteria, P. aeruginosa

Endoscope infections

- Infections traced to deficient practices
 - Inadequate cleaning (clean all channels)
 - Inappropriate/ineffective disinfection (time exposure, perfuse channels, test concentration)
 - Failure to follow recommended disinfection practices (tapwater rinse)
 - Flaws is design of endoscopes or AERs

Endoscope disinfection

- CLEAN-mechanically cleaned with water and enzymatic cleaner
- HLD/STERILIZE-immers scope and perfuse HLD/sterilant through all channels for at least 12 min
- RINSE-scope and channels rinsed with sterile water, filtered water, or tap water followed by alcohol
- DRY-use forced air to dry insertion tube and channels
- STORE-prevent recontamination

Disinfection and sterilization conclusions

- When properly used, disinfection and sterilization can ensure the safe use of invasive and non-invasive medical devices.
- Method of disinfection and sterilization depends on the intended use of the medical device
- Cleaning should always precede high-level disinfection and sterilization
- Current disinfection and sterilization guidelines must be strictly followed.

Failure to follow disinfection and sterilization principles

How to Assess Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection & Sterilization Principles

Dr. Bill Rutala, University of North Carolina
Sponsored by Virox Technologies www.virox.com

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
How to Assess Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection & Sterilization Principles

Dr. Bill Rutala, University of North Carolina
Sponsored by Virox Technologies www.virox.com

Failure to Follow Disinfection and Sterilization Principles

- These events are relatively frequent; however, not commonly appreciated
- Human errors
 - Time setting of 132°C steam sterilizer at 0 min rather than 4 min
 - Failure to sterilize items after cleaning
 - Exposure time on AER set at 5 min rather than 20 min
- Equipment failures-biopsy port caps not secure
- System problems-unwrapped specula

Failure to Follow Disinfection and Sterilization Principles

- Method for assessing patient risk for adverse events
- Although exposure events are often unique, can approach the evaluation of potential failure using a standardized approach
- Propose a sequence of 14 steps that form a general approach to a possible failure of disinfection/sterilization (D/S)
- D/S failure could result in patient exposure to an infectious agent

Scenario:
Hospital A has been purchased an AER for GI endoscope reprocessing. The AER has been in use for 9 months. The hospital was using >2% glutaraldehyde with an intended exposure time of 20 minutes. It was discovered that the exposure time was incorrectly set at 10 minutes. Endoscopes for 9 months were processed at 10 minutes rather than the recommended 20 minutes.

What Do You Do?

Scenario:
Hospital B discovered that for the past 3 days all surgical instruments were exposed to steam sterilization at 132°C for 0 minutes rather than the intended 4 minutes. A central processing technician turned the timer to 0 minutes in error.

Failure to Follow Disinfection and Sterilization Principles

Scenario:
Hospital B discovered that for the past 3 days all surgical instruments were exposed to steam sterilization at 132°C for 0 minutes rather than the intended 4 minutes. A central processing technician turned the timer to 0 minutes in error.
What Do You Do?

Failure to Follow Disinfection and Sterilization Principles

- Step 1-confirm failure
 - Confirm that the suspected failure did, in fact, occur.
 - ICP must review the circumstances of the reported failure including: the time and date of the possible failure, type of D/S method, and evidence of process parameters (printout) and results of physical, chemical and/or biological indicators.

- Step 2-embargo improperly D/S items
 - If a D/S failure has occurred, one should immediately embargo any medical items that may not have been appropriately D/S
 - All items since the last successful processing (as demonstrated by process measures and/or physical, chemical, or biological indicators) should be embargoed.
 - Retrieving all items may require visiting all areas where the medical/surgical items may be stored or used including CP, ORs, community-based practices, storerooms, etc.
Failure to Follow Disinfection and Sterilization Principles

- Step 3 - do not use questionable D/S item
 - The incriminated D/S item should be immediately placed off line and not used for D/S of medical or surgical devices until its proper functioned can be assured
 - This may involve several runs with assessment of process parameters and physical, chemical and/or biological indicators
 - Medical engineering or the manufacturer’s representative usually performs repairs and evaluation of the unit

- Step 4 - inform key stakeholders
 - All key stakeholders should be informed of the problem
 - Risk management
 - Medical/nursing director of the involved units (e.g., OB, GI)
 - Personnel involved in disinfection/sterilization
 - If is often easier to arrange a face-to-face conference to assure complete transmission of the facts with feedback than to use email or telephone consultation

- Step 5 - investigate the cause of the D/S problem
 - A complete and thorough evaluation of the possible D/S failure should be rapidly completed.
 - ICP should review the exact circumstances of the possible D/S failure including dates and results of all process measures (e.g., temperature, time, sterilant/HLD concentration) and physical, chemical and biological indicators obtained in the recent past going back far enough to assess the time/date of the first possible malfunction

- Step 6 - line listing of exposed patients
 - Once a failure of D/S has been documented, it is important to initiate the evaluation of potential patient exposures
 - First step is to create a line listing of all possible patients who may have been exposed to possibly contaminated medical/surgical devices
 - Patient name, identification number, date(s) of exposure, contaminated device used, underlying risk factors for infection, development of HAIs (pathogen, body site), and other potentially adverse events

- Step 7 - does D/S failure increase patient risk for infection
 - Once a failure of D/S process has been documented with possible exposure to a contaminated item, it is crucial to determine whether in fact the failure could result in an adverse patient event.
 - For example, 3 min for flash sterilization rather than 4 min. Would not consider 3 min flash sterilization cycle as representing a patient hazard.
 - Assessing risk should always include on a review of the scientific literature and national guidelines

- Step 8 - inform expanded list of stakeholders
 - All stakeholders should be informed of the progress of the investigation, especially if an increased risk to patients is possible or documented
 - Risk management
 - Medical/nursing director of the involved units (e.g., OB, GI)
 - Personnel involved in disinfection/sterilization
 - Public relations, healthcare administration, and legal
 - A press release should be prepared in case of need and a spokesperson appointed
Failure to Follow Disinfection and Sterilization Principles

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Develop hypothesis for D/S failure and initiate corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corrective actions (e.g., reset timer, monitor concentration of HLD) should be initiated to correct the deficiencies in reprocessing</td>
</tr>
<tr>
<td></td>
<td>Reprocessing of any item that may not have been appropriately disinfected/sterilized must be done</td>
</tr>
</tbody>
</table>

Failure to Follow Disinfection and Sterilization Principles

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Assess adverse patient events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initiate a more detailed study, if necessary, of possible adverse outcomes in patients</td>
</tr>
<tr>
<td></td>
<td>This may entail designing a prospective cohort study</td>
</tr>
<tr>
<td></td>
<td>This may require reviewing medical records and/or examining patients for infections, chemical reactions, or other adverse events</td>
</tr>
<tr>
<td></td>
<td>Specific laboratory tests may be necessary such as testing source patients and exposed persons for bloodborne pathogens such as HIV, HBV, and HCV</td>
</tr>
</tbody>
</table>

Failure to Follow Disinfection and Sterilization Principles

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Consider patient notification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In conjunction with the legal department, notify state and federal authorities if required by regulation or law</td>
</tr>
</tbody>
</table>

Failure to Follow Disinfection and Sterilization Principles

<table>
<thead>
<tr>
<th>Step 12</th>
<th>Consider patient notification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In conjunction with the legal department, notify state and federal authorities if required by regulation or law</td>
</tr>
<tr>
<td></td>
<td>Consider whether patients should be notified of the disinfection/sterilization failure</td>
</tr>
<tr>
<td></td>
<td>If it is determined the failure could result in adverse patient events, then patients should be notified</td>
</tr>
<tr>
<td></td>
<td>Determine who will notify the patients</td>
</tr>
<tr>
<td></td>
<td>Patient’s local medical provider, risk management, attending physician at the time of failure, ICP</td>
</tr>
<tr>
<td></td>
<td>One should develop a script to be used in notification to ensure all patients receive the same information</td>
</tr>
</tbody>
</table>

Failure to Follow Disinfection and Sterilization Principles

<table>
<thead>
<tr>
<th>Step 12 (continued)</th>
<th>The healthcare facility must decide who will provide these services and whether the facility will cover the cost of care.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In general, we believe that if the facility was responsible for the failure then it should provide these services at no patient charge</td>
</tr>
<tr>
<td></td>
<td>However, if the exposure resulted from failures outside the institution (receipt by the facility of inadequately sterilized devices), then the facility may want to offer the services but at patient expense or causative party’s expense (e.g., manufacturer)</td>
</tr>
</tbody>
</table>
Failure to Follow Disinfection and Sterilization Principles

- **How about if you were able to conduct a risk assessment and the risk for infection was 2 in 100 trillion**
 - There is no fixed or accepted frequency that necessitates risk disclosure.
 - Hospital could conclude that the risk frequency of 2 in 100 trillion is so small that they are effectively, legally, of no weight or less than the risk of many other daily life exposures we all endure.
 - Hospital could conclude that all exposures should be communicated to the patient regardless of the 2 in 100 trillion risk for an adverse event.
 - Decision to inform patients is made by the hospital stakeholders.

- **Step 13-develop long term follow-up plan**
 - Once the problem leading to the D/S failure has been identified and corrective action initiated, it is essential to assess whether these interventions have eliminated the problem over the long-term.
 - This may require long-term surveillance, changes in current policies or procedures, development of new policies or procedures, evaluation of current equipment, etc.

- **Step 14-perform after-action report**
 - A report of the event should be prepared for presentation to the appropriate healthcare system committees.
 - Consideration should be given to publishing the evaluation if it provides a contribution to the scientific literature.

Failure to Follow Disinfection and Sterilization Principles

- **Overview of disinfection and sterilization principles**
- **Failure Scenarios**
- **Recommended Protocol for Exposure Evaluation**

Thank you
How to Assess Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection & Sterilization Principles

Dr. Bill Rutala, University of North Carolina
Sponsored by Virox Technologies www.virox.com

References

- Rutala WA. APIC guideline for selection and use of disinfectants. Am J Infect Control 1996;24:313

The Next Few Teleclasses

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Speaker(s)</th>
<th>Teleclass sponsored by</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 24</td>
<td>How to Assess Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection and Sterilization Principles</td>
<td>Dr. William Rutala, UNC</td>
<td>Virox Technologies Inc www.virox.com</td>
</tr>
<tr>
<td>September 14</td>
<td>Disinfecting Soft Goods</td>
<td>Dr. Curt White, Aegis</td>
<td></td>
</tr>
<tr>
<td>September 20</td>
<td>The SARS Experience in Singapore – What Can We Learn</td>
<td>Dr. Chris Wynne, CBHB, New Zealand</td>
<td></td>
</tr>
<tr>
<td>September 21</td>
<td>Preventing Central Line Associated Bacteraemia</td>
<td>Robert Garcia, Brookdale University Medical Center</td>
<td></td>
</tr>
</tbody>
</table>

For the full teleclass schedule – www.webbertraining.com
For registration information www.webbertraining.com/howtoc8.php

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com