What can knowing something about the evolution of *Clostridium difficile* teach you about infection prevention and control?

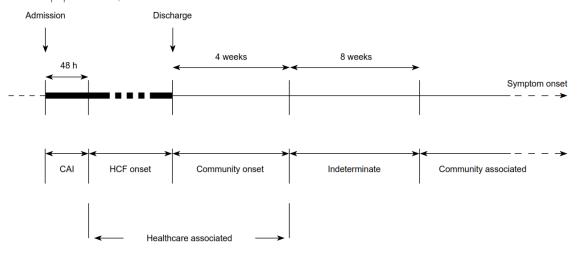
Tom Riley

School of Biomedical Sciences
The University of Western Australia
and

Department of Microbiology
PathWest Laboratory Medicine (WA)
Western Australia

Hosted by Jane Barnett jane@webbertraining.com

www.webbertraining.com


October 15, 2025

Outline

- Definitions
- History
- Animal reservoirs
- Environmental sources
- One Health

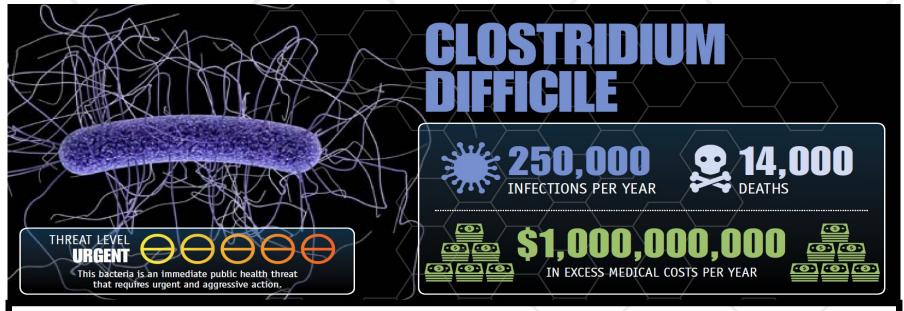
Community-associated vs community-acquired

Adapted with permission from McDonald LC, Coignard B, Dubberke E, et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol 2007;28:140–45.

CAI, community-associated infection; HCF, healthcare facility

Source vs reservoir

The reservoir of an organism is the site where it resides, metabolizes and multiplies. The source of the organism is the site from which it is transmitted to a susceptible host, either directly or indirectly through an intermediary object.

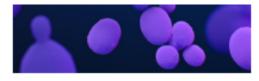

The reservoir may or may not be the source from which an agent is transferred to a host. (Brachman P, Medical Microbiology Ed. S Baron 1996)

CDC, Dec 2013

Urgent Threats

- Clostridium difficile
- Carbapenem-resistant Enterobacteriaceae (CRE)
- Drug-resistant Neisseria gonorrhoeae

Clostridium difficile (C. difficile) causes life-threatening diarrhea. These infections mostly occur in people who have had both recent medical care and antibiotics. Often, C. difficile infections occur in hospitalized or recently hospitalized patients.


2019 CDC Report

These germs are public health threats that require urgent and aggressive action:

CARBAPENEM-RESISTANT ACINETOBACTER

CANDIDA AURIS

CLOSTRIDIOIDES DIFFICILE

CARBAPENEM-RESISTANT ENTEROBACTERIACEAE

DRUG-RESISTANT
NEISSERIA GONORRHOEAE

THREAT LEVEL URGENT

223,900 Estimated cases in hospitalized

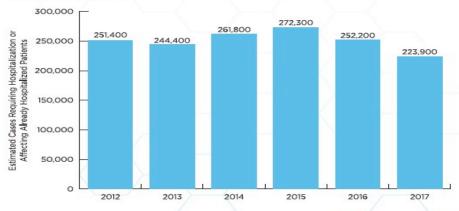
patients in 2017

\$1B Estimated attributable healthcare costs in 2017

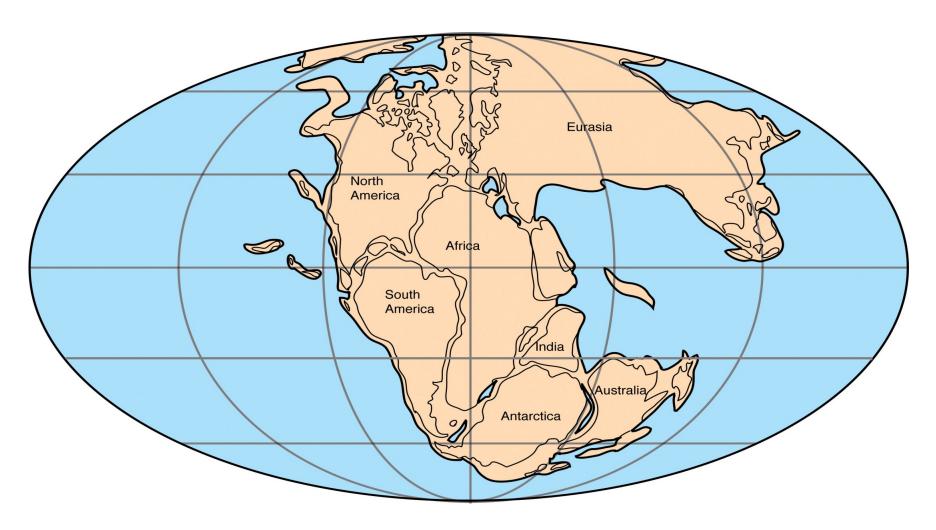
Clostridioides difficile (C. difficile) bacteria can cause life-threatening diarrhea. Infections occur most often in people who have taken antibiotics for other conditions. It is the most common healthcare-associated infection.

WHAT YOU NEED TO KNOW

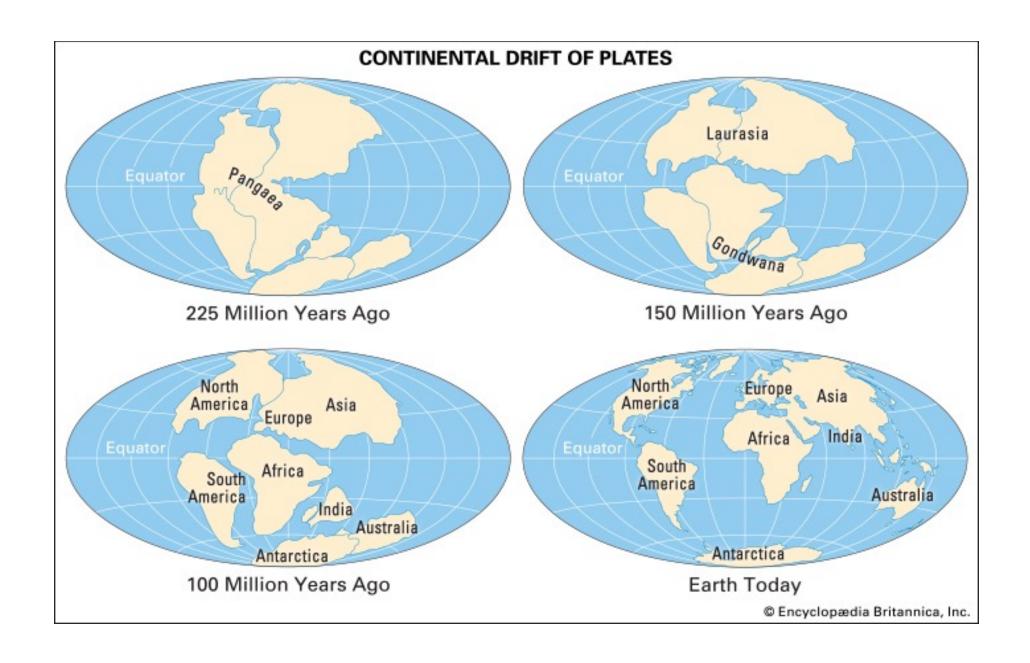
- While healthcare-associated C. difficile cases are decreasing, community-associated cases are not.
- Strategies to reduce C. difficile infections include improving antibiotic use, infection control, and healthcare facility cleaning and disinfection.
- C. difficile infections are more common and tend to be more severe in older patients.

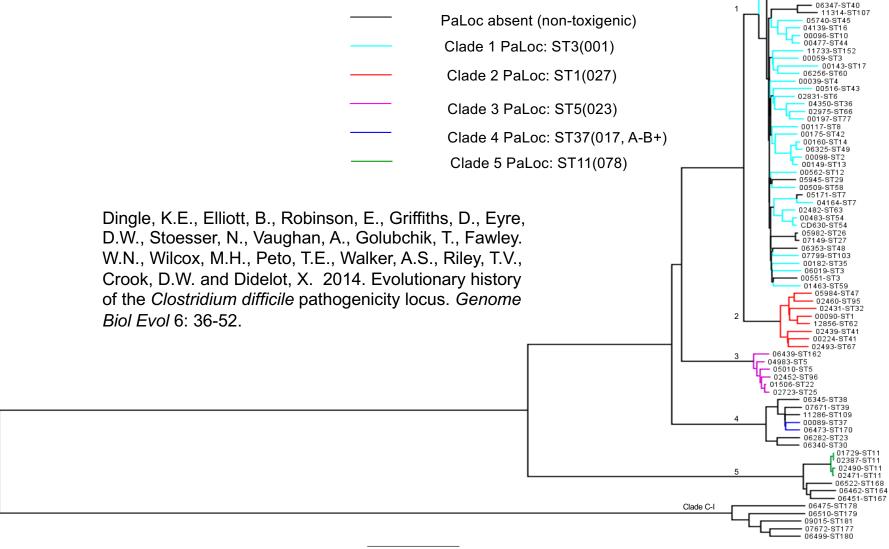

Previously Clostridium difficile. Also called C. diff. Cost includes hospitalonset cases only.

U.S. Department of Health and Human Services Centers for Disease Control and Prevention

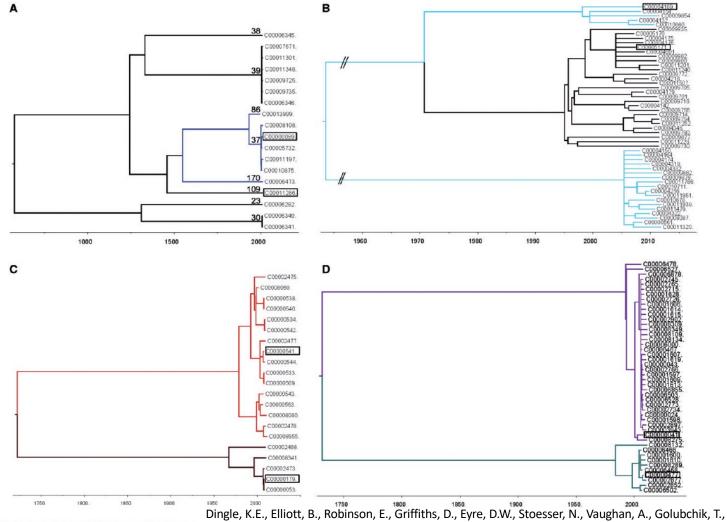

CASES OVER TIME

Continued appropriate infection control, antibiotic use, and diagnostic testing are important to maintain decreases in *C. difficile* cases.

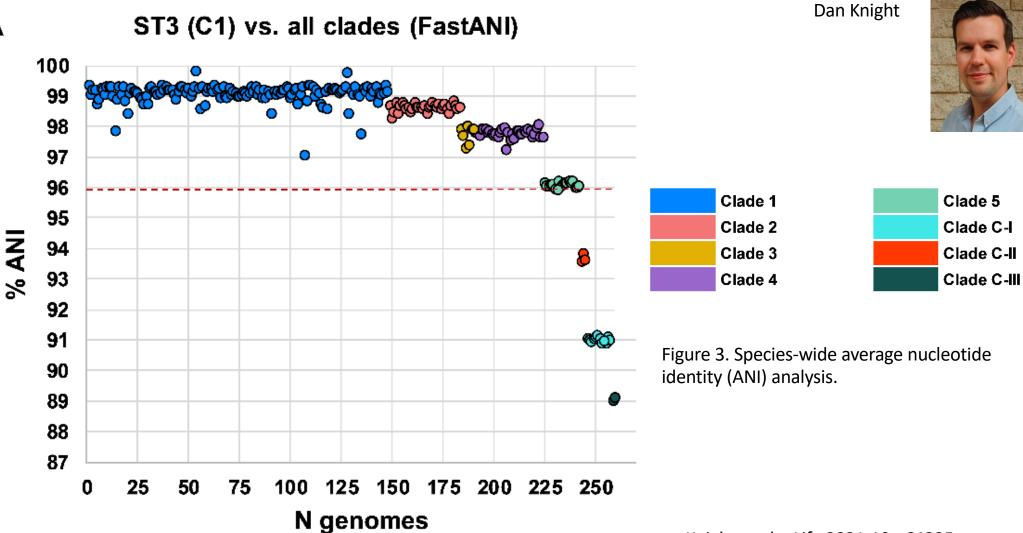


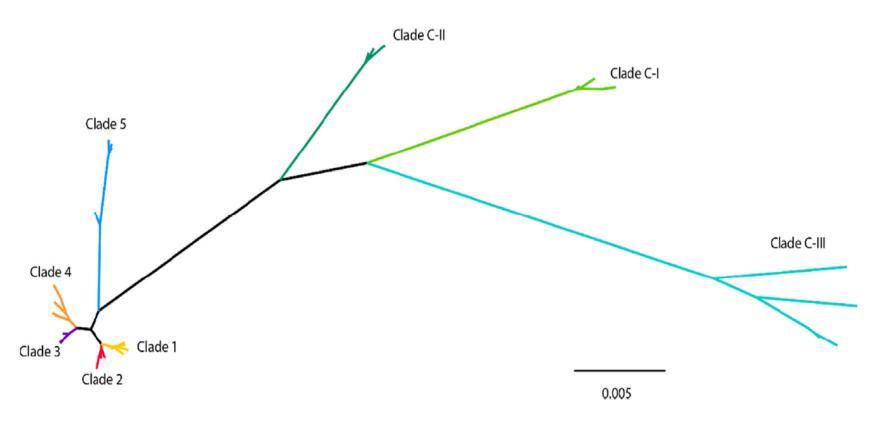

Clostridium difficile (also named Clostridioides difficile (Lawson et al., 2016))

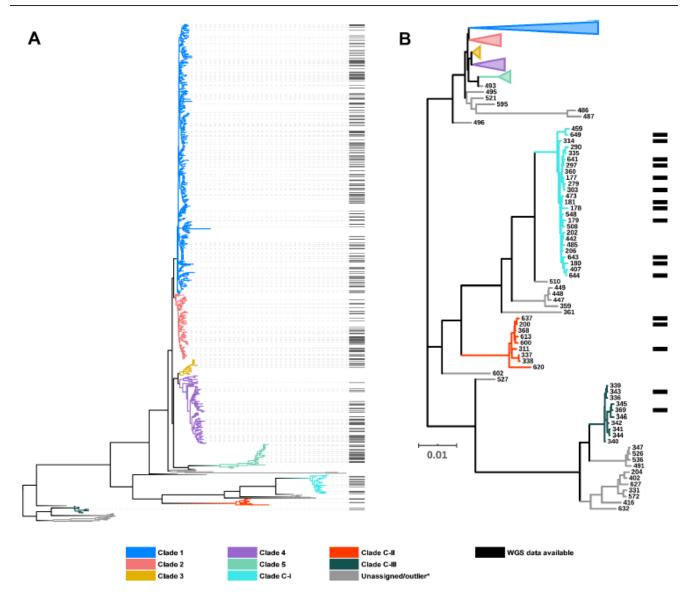
- An ancient genus, hundreds of millions of years old anaerobic
- The population structure of *C. difficile* consists of at least 8 clades, each of which includes toxigenic strains (Griffiths et al. 2010; Dingle et al. 2011; Stabler et al. 2012).
- Genes for toxins A & B are contained on a 19.6-kB Pathogenicity Locus (PaLoc), absent in non-toxigenic strains
- When present, the PaLoc is always found at the same chromosomal location (Braun et al. 1996; Dingle et al. 2011) and it is tempting to conclude that the PaLoc was stably integrated before the clades diverged but evidence says otherwise.
- However, nontoxigenic strains are present throughout the *C. difficile* population, occasionally sharing the same multilocus sequence type (ST) as toxigenic strains (Dingle et al. 2011).
- This irregular distribution resembles that of an MGE and some evidence of a phage.



Pangaea was the super-continent that existed during the late Paleozoic roughly 300 million years ago. It was surrounded by a super-ocean called Panthalassa.

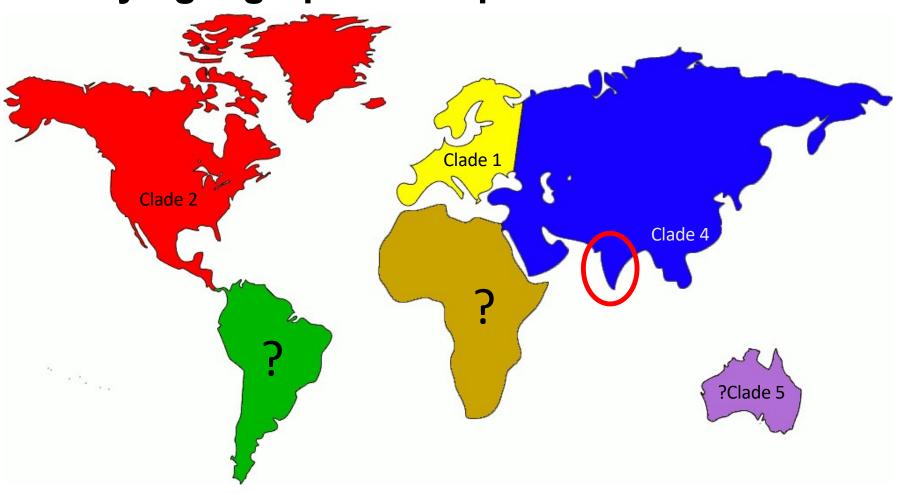



- 10940-ST122 05172-ST15


Dingle, K.E., Elliott, B., Robinson, E., Griffiths, D., Eyre, D.W., Stoesser, N., Vaughan, A., Golubchik, Fawley. W.N., Wilcox, M.H., Peto, T.E., Walker, A.S., Riley, T.V., Crook, D.W. and Didelot, X. 2014. Evolutionary history of the *Clostridium difficile* pathogenicity locus. *Genome Biol Evol* 6: 36-52.

Knight et al. eLife 2021;10:e64325. DOI: https://doi.org/10.7554/eLife.64325

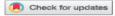
Fig. 2. Maximum likelihood tree generated using MLST data from all known clades present in the PubMLST database. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model. The tree with the highest log likelihood (-8568.3698) is shown. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013).

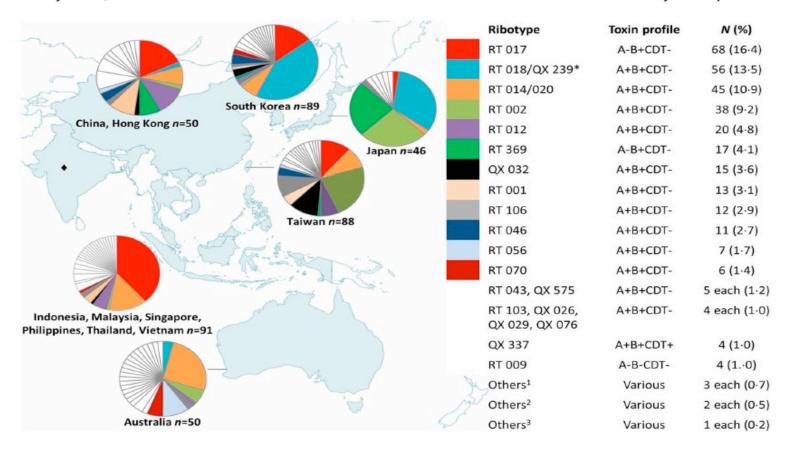


Taxonomic placement of cryptic clades predates *C. difficile* emergence by millions of years

Previous studies using BEAST have estimated the common ancestor of C1–5 existed between 1 to 85 or 12 to 14 million years ago (mya) (He et al., 2010; Kumar et al., 2019). Here, we used an alternative Bayesian approach, BactDating (Xavier Didalot), to estimate the age of all eight *C. difficile* clades currently described. The last common ancestor for *C. difficile* clades C1–5 was estimated to have existed between 1.11 and 6.71 mya. In contrast, all three cryptic clades were estimated to have emerged millions of years prior to the common ancestor of C1–5.

Knight et al. eLife 2021;10:e64325. DOI: https://doi.org/10.7554/eLife.64325


Phylogeographical tropism of *C. difficile*



Clostridioides difficile infection in the Asia-Pacific region

Deirdre A. Collins ¹ A. Kyung Mok Sohn^b, Yuan Wu^c, Kentaro Ouchi ¹ A. Yoshikazu Ishii^{e,f}, Briony Elliott^a, Thomas V. Riley ¹ A. Kazuhiro Tateda^{e,f,h} and for the *Clostridioides difficile* Asia-Pacific Study Group*

Emergence and global spread of epidemic healthcareassociated *Clostridium difficile*

Miao He¹, Fabio Miyajima²,³, Paul Roberts²,³, Louise Ellison¹, Derek J Pickard¹, Melissa J Martin⁴, Thomas R Connor¹, Simon R Harris¹, Derek Fairley⁵, Kathleen B Bamford⁶,², Stephanie D'Arc⁶,², Jon Brazier⁶, Derek Brown⁶, John E Coia⁶, Gill Douce⁶, Dale Gerding¹⁰, Hee Jung Kim¹¹, Tse Hsien Koh¹², Haru Kato¹³, Mitsutoshi Senoh¹³, Tom Louie¹⁴, Stephen Michell¹⁵, Emma Butt¹⁵, Sharon J Peacock¹,¹⁶-¹⁷, Nick M Brown¹७,¹Һ, Tom Riley¹⁶, Glen Songer²⁰, Mark Wilcox²¹, Munir Pirmohamed²,³, Ed Kuijper²², Peter Hawkey²³, Brendan W Wren⁴, Gordon Dougan¹, Julian Parkhill¹ & Trevor D Lawley¹

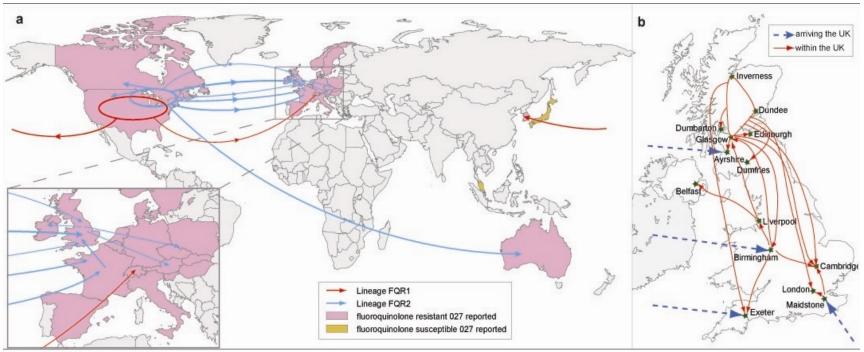


Figure 5: PCR types of *C. difficile* in hospital patients in England and Wales: referrals to ARL 1995- 2003

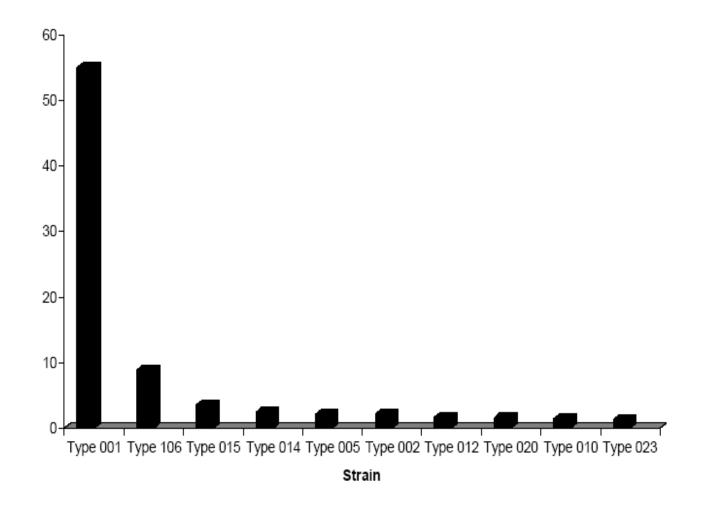
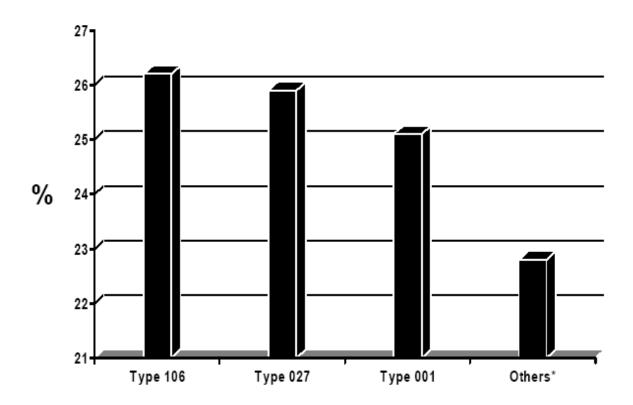



Figure 4: PCR types of *C. difficile* in hospital patients in England January-December 2005: samples from the random sampling surveillance scheme (n=881)

^{* 200} isolates consisting of 22 different PCR ribotypes

Table 1Notable types within the phylogenetic clades.

Clade	Notable types							
1	UK 014 (ST-2), ^a UK 020 (ST-14) ^a , UK 002 (ST-8), ^a UK 015 (ST-44), ^a UK							
	018 (ST-17) ^a							
2	UK 027 (ST-1), ^b UK 244 (ST-41), ^b UK 176 (ST-1), ^b UK 251 (ST-231) ^b							
3	UK 023 (ST-5) ^b							
4	UK 017 (ST-37) ^c , UK 047 (ST-37) ^c							
5	UK 078 (ST-11), ^b UK 126 (ST-11), ^b UK 033 (ST-11), ^d UK 237 (ST-167) ^e							
C-I	ST-181, ^e ST-206 ^e							
C-II	ST-200, ^{c,g}							
C-III	Unknown ^f							

NB: Where ribotypes are associated with multiple sequence types, the most common sequence types is given (Dingle et al., 2011; Stabler et al., 2012).

```
<sup>a</sup> Toxin profile: A + B + CDT -.
```

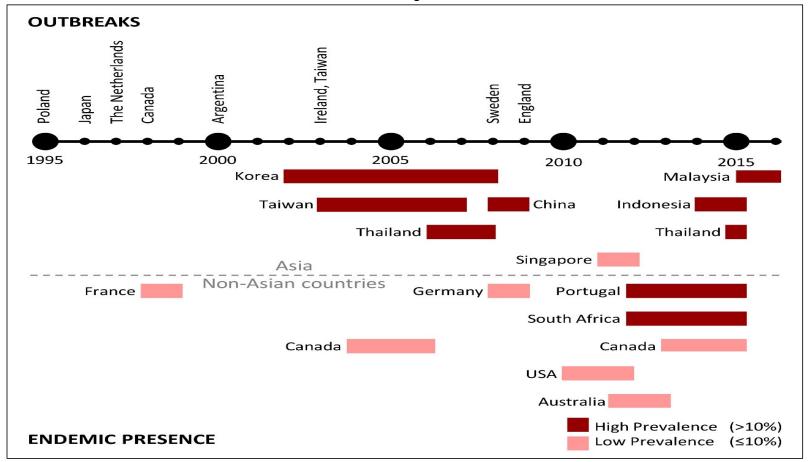
^b Toxin profile: A + B + CDT +.

^c Toxin profile: A - B + CDT -.

^d Toxin profile: A - B - CDT +.

^e Toxin profile: A - B + CDT +.

f Very little is known about the three cryptic clades. Although some do contain unusual toxigenic strains, the majority are apparently non-toxigenic.


 $^{^{\}rm g}$ Toxin profile: A + B - CDT - (unusual monotoxin locus).

Comparative Genome Analysis and Global Phylogeny of the Toxin Variant *Clostridium difficile* PCR Ribotype 017 Reveals the Evolution of Two Independent Sublineages

M. D. Cairns, a,b,c M. D. Preston,d C. L. Hall, D. N. Gerding,e,s P. M. Hawkey,f,g H. Kato,h H. Kim, E. J. Kuijper, T. D. Lawley,k H. Pituch, S. Reid,m B. Kullin,m T. V. Riley,n K. Solomon,o,p P. J. Tsai,q,t J. S. Weese,r R. A. Stabler, B. W. Wren

"Phylogeographic analyses show a North American origin for RT017, as has been found for the recently emerged epidemic RT027 lineage."

Imwattana et al. Emerg Microbes Infect 2019

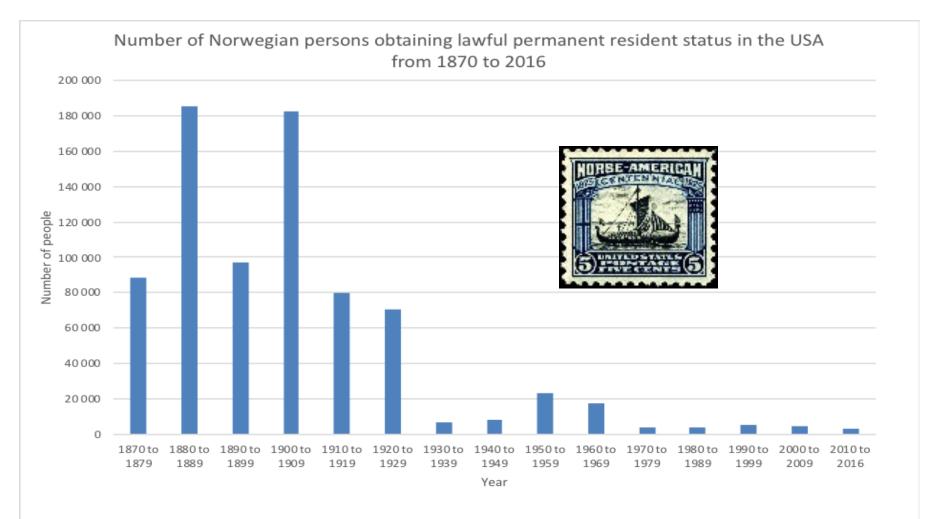
Timeline of *C. difficile* RT 017 reports around the world. Outbreaks refer to an increase in the regional prevalence of RT 017, which is confirmed either to be clonal or with evidence suggesting that isolates came from the same source. Endemic presence refers to prevalence reports that were not associated with outbreaks.

MERCHANTS' EXPRESS LINE OF CLIPPER SHIPS!

Loading none but First-Class Vessels and Regularly Dispatching the greatest number.

CALIFORNIA

HENRY BARBER, Commander, AT PIER 13 EAST RIVER.


This elegant Clipper Ship was built expressly for this trade by Samuel Hall, Esq., of East Boston, the builder of the celebrated Clippers "Subprise," "Gamedock," "John Gilpin," and others. She will fully equal them in speed! Unusually prompt dispatch and a very quick trip may be relied upon. Engagements should be completed at once.

Agents in San Francisco, Mesers, DE WITT KITTLE & CO.

RANDOLPH M. COOLEY, 88 Wall Street, Tontine Building.

NESHIT A CO., PRINTERS.

The period between 1848 and 1855 is known in the U.S. as California Gold Rush. The rush started when James W. Marshall found gold at Sutter's Mill in California. 300,000 Chinese came and made up 10% of the Californian population at the time.

Office of Immigration Statistics, U. S. Department of Homeland Security. (2016). 2016 Yearbook of Immigration Statistics. Retrieved from: https://www.dhs.gov/immigrationstatistics/yearbook/2016

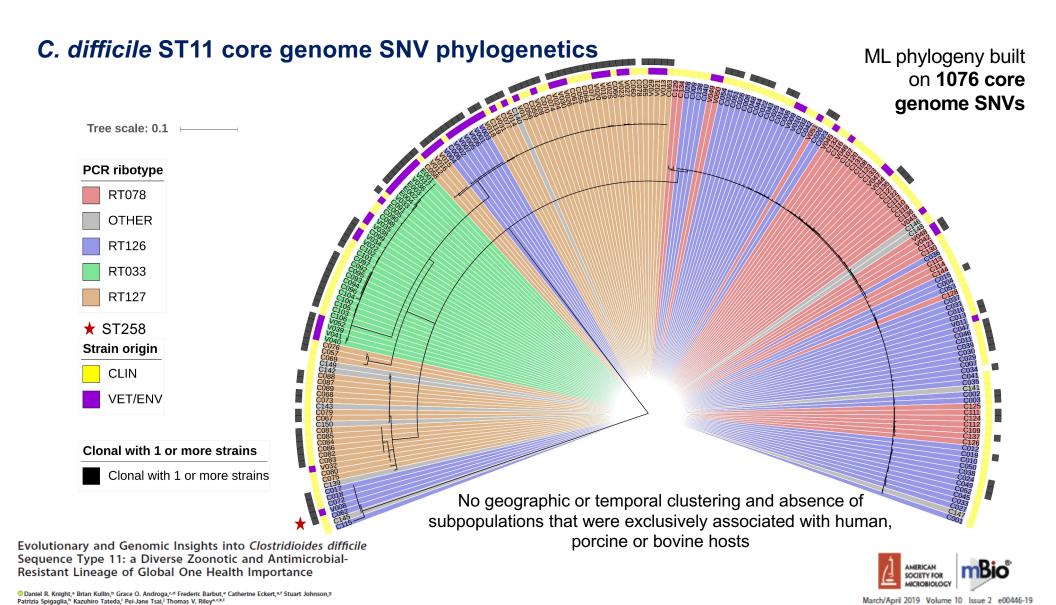
The NGO Eurogroup for Animals (2021) estimated that in 2019, over 1.6 billion livestock (mainly ovine, bovines, poultry and pigs) were transported alive across the EU and beyond its borders by road, sea, rail, and air for trade purposes.

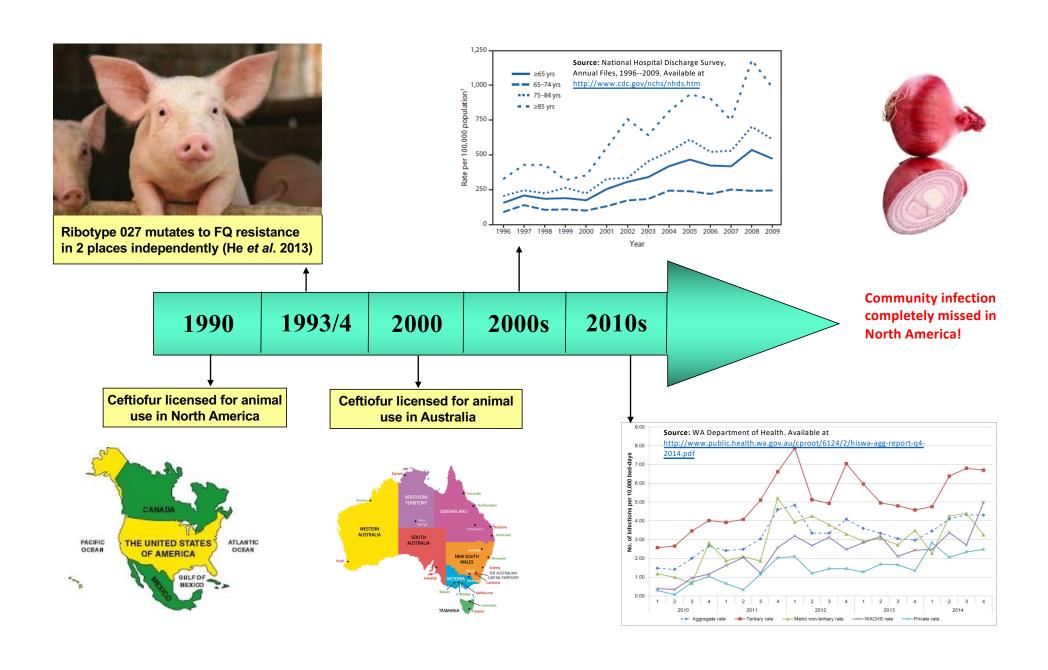
Animal transport as regulated in Europe: a work in progress as viewed by an NGO

Nikita Bachelard

La Fondation Droit Animal, Ethique et Sciences (LFDA), Paris, France

Animal Frontiers, Volume 12, Issue 1, February 2022, Pages 16–24, https://doi.org/10.1093/af/vfac010




Knight, D.R., Squire, M.M., Collins, D.A. and Riley, T.V. 2017. Genome analysis of *Clostridium difficile* PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. *Front Microbiol* 7: 2138. doi: 10.3389/fmicb.2016.02138

Comparative phylogenetic, genomic and antibiogram analysis of RT014 isolated from humans (n=9) and piglets (n=9) in Victoria, Australian 2013																							
KEY: present ● absent ○					Toxin genes				AMR genes				Tn	_	Bacteriophages					slpA	slpA allele		
Isolate ID	Host species	RT	ST	MLST Clade	tcdA	cdtLoc	AtcdC	ermB	tetW	tetM	aph3'-III sat4	ante	Tn6194 Tn5397 TnB1230-like	ФСD27	ФС2	ФСDМН1 ФСD38-2	ФСD6356	ФММР02	Bacillus G Clost_c_st	7	9		
ESP146	Porcine	14	49	1	•		0	•	•	•	• •	0	• • •	•	0	0 0	•	•	00	0	•		
ESP148	Porcine	14	49	1			0		•		•		• • •	0	0	0		0	00	0			
ESP150	Porcine	14	49	1			0				•	0	• • •	0	•	0 0	•	0	00	0			
ESP152	Porcine	14	49	1			0		•		•	0	• • •		0	• 0	•	0	00	0			
ESP154	Porcine	14	49	1			0		•		•	0	• • •	0	0	0 0	•	0	• 0	0			
ESP156	Porcine	14	49	1			0		•		•	0	• • •	0	•	• 0	•	0	00	0			
ESP158	Porcine	14	49	1			0		•		• •	0	• • •	0	0	0 0)		• 0	0			
ESP160	Porcine	14	13	1	•		0	0	•	0	C	0	00	0	0	0 0	0 (0	00	0			
ESP162	Porcine	14	13	1			0	0		0	C	0	00	0	0	0 0	0 (0	00	0			
SQ0120	Human	14	13	1			0	0	0	0	<u> </u>	0	000	0	0	0 0	0 (0 •	0	•		
SQ0114	Human	14	2	1			0	0	0	0	00	0	000	0		0 0	0 (0	00		0		
SQ0116	Human	14	2	1			0	0	0	_	00	0	000	0	•	0 0	0	0	00		0		
SQ0118	Human	14	2	1			0	0	0	\circ	00	0	000	0		• 0	0	0	00		0		
SQ0126	Human	14	2	1			0	0	0	\circ	00	0	000	0		0 0	0 (0	00		0		
SQ0341	Human	14	2	1			0	0	0	0	00	0	000	0	•	0 0	0 (0	00		0		
SQ0342	Human	14	2	1			0	0	0	0	00	0	000	0	•	0 0	0 (0	00		0		
SQ0348	Human	14	2	1			0	0	0	0	00	0	000	0	•	0 0	0 (0	00		0		
SQ0352	Human	14	2	1			0	0	0	\circ	00	0	000	0		0 0	0 (0	00		0		

Dan Knight

C. difficile infection in Australia

Surveillance

- Mandatory since 2010
- Counts numbers of "hospital identified" CDI
- Includes a proportion of CA-CDI
- No requirement to determine source but many hospitals do
- But use McDonald "interim" definitions from 2007!
- No estimation of severity
- This all needs revision

Incidence: 4.00/10,000 patient days (PD)

23.8/100,000 population

Prevalence: 7% of all diarrhoeal specimens

Mortality: 7%

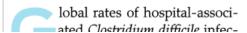
Length of stay: 16.8 days

Costs: \$12,000-19,000 per case

- >**8,500 cases** per year*
- > ~600 deaths per year
- > ≥\$107 million per year in costs
- > 14% of all hospital-associated infections

Deirdre Collins

ACSQH, 2022 Cheng et al., 2016 Putsathit et al., 2015 Collins et al., 2016 Chen et al., 2017 Bond et al., 2017


^{*}This is an underestimation of case numbers in Australia, since counts are of hospital-identified CDI alone, not accounting for CDI cases detected or undiagnosed in the community.

Research

Increasing incidence of *Clostridium difficile* infection, Australia, 2011–2012

Claudia Slimings BSc, PGDipHlthSci, PhD, Associate Professor¹

Abstract

(Slimings et al Med J Aust 2014; 200: 272–276)

In some parts of the world 50% of CDI is now community-associated - ~25% in Australia in 2011/12

AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE

Clostridioides difficile infection: Data snapshot report: 2020 and 2021

What do the analyses show about CDI in Australia?

In Australian public hospitals:

- separations with a CDI diagnosis increased by 29% from 2020 and 2021
- community-onset CDI (pre-existing CDI symptoms on admission) accounted for over 80% of separations
- healthcare-associated hospital-onset CDI accounted for less than 20% of all CDI diagnoses.

What do these findings mean and why are they important?

The findings from this report suggest that:

- community-onset CDI is a significant health problem in Australia
- hospital-based strategies to prevent healthcare-associated hospital-onset CDI are effective
- changes in CDI rates coinciding with the response to COVID-19 <u>may</u> be linked to improved IPC strategies and changes in access to healthcare during the pandemic.

AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE

D24-15872

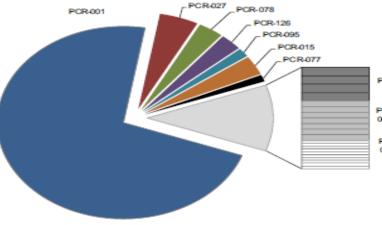
INFORMATION for clinicians

Clostridioides difficile infection (CDI) - Information for primary health providers

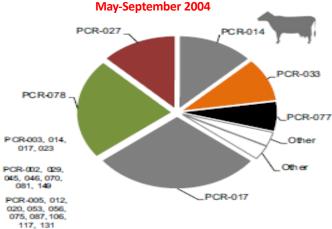
Published on 9 October 2024

CDI is a community health issue

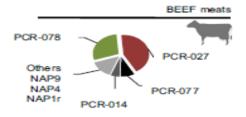
Background information for clinicians


Clostridioides difficile (C. difficile) is a spore-forming bacterium that causes diarrhoea, commonly after exposure to antimicrobial agents.³ Exposure to other medications, such as proton pump inhibitors and immunosuppressant agents can independently contribute to CDI for some patients.^{4, 5} C. difficile is typically found in the gastrointestinal tracts of many young animal species, humans, and contaminates the natural environment including agriculture and food production, as well as in built environments.^{6, 7} Transmission of C. difficile occurs by ingestion of spores, either through person-to-person contact, or animal-to-person contact. C.difficile spores can also survive on environmental surfaces for extended periods of time and can be transferred from person-to person by contaminated hands or equipment.⁷

Animal reservoirs

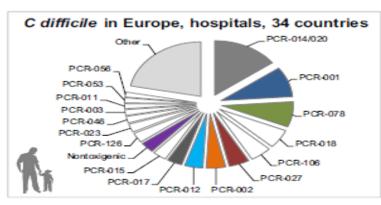

- Companion animals
- Food animals
- Horses
- Wild animals
- Reptiles
- Birds

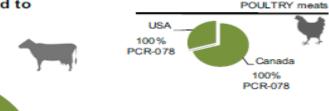
Food sources

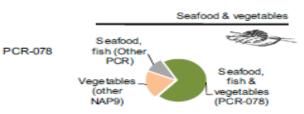

Hospitals, Germany

C difficile in calves at the farm, 102 farms, Canada

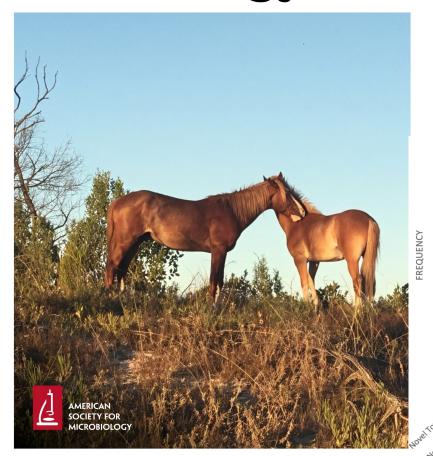
C difficile in foods North America




C difficile in calves shipped to a single farm, USA

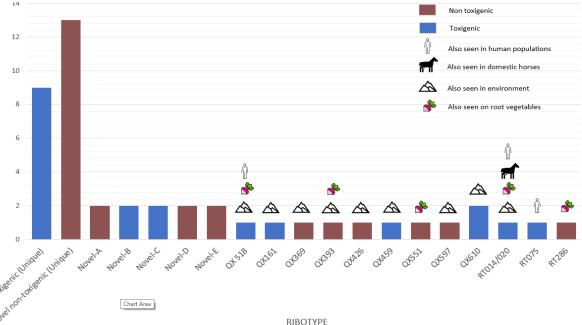

PCR-033

PCR-002


Infect Dis Clin N Am 27 (2013) 675-685

eISSN: 1098-5336

Applied and Environmental Microbiology



Clostridioides difficile in feral horse populations in Australia

Natasza M. R. Hain-Saunders1 Daniel R. Knight, Andrea Harvey, Mieghan Bruce, Brian A. Hampson and Thomas V. Riley

C. difficilewas isolated from 45 of the 380 samples (11.8%)—forty ribotypes (RTs) were identified, 28 of which (70%) were novel.

A JOURNAL BY THE AMERICAN SOCIETY FOR MICROBIOLOGY

Environmental sources

- Soil
- Water
- Wastewater
- Gardens home
- Gardens vegetable (home or commercial)
- Parks

October 2023 Volume 89 Issue 10


Applied and Environmental Microbiology

Environmental Microbiology | Full-Length Text

Biogeographic distribution and molecular epidemiology of *Clostridioides (Clostridium) difficile* in Western Australian soils

Karla Cautivo-Reyes, ¹ Daniel R. Knight, ^{2,3} Deborah Bowie, ⁴ Benjamin Moreira-Grez, ⁴ Andrew S. Whiteley, ⁵ Thomas V. Riley^{1,2,3,6}

FIG 1 Biogeographic distribution of *C. difficile* positive soil samples (n = 100/321)

			Univariable model	Covariate Odds ratios (95% CI)*	
Variable	Variable categories	C. difficile number isolated (%)	Odds ratios (95% CI)†	Sampling site	P value [¶]
Age [‡]	Old lawn $(n = 113)$	53 (47)	Referent		
	New lawn $(n = 198)$	129 (65)	2.11 (1.32–3.4)	2.30 (1.16-4.57)	0.015#
Area	Extra-large (n = 85)	53 (62)	Referent		
	Large (n = 53)	26 (49)	0.58 (0.28-1.16)	0.49 (0.16-1.49)	0.7
	Medium (n = 101)	60 (59)	0.88 (0.49-1.59)	1.02 (0.42-2.51)	0.7
	Small (n = 72)	43 (60)	0.89 (0.47-1.71)	0.88 (0.32-2.43)	0.7
Location	North (n=161)	98 (60.9)	Referent		
	South (n = 150)	84 (56)	1.22 (0.78-1.92)	1.25 (0.61-2.59)	0.99
Caraca	Autumn (n = 224)	135 (60.3)	Referent		
Season	Winter (n = 87)	47 (54)	0.77 (0.47-1.28)	0.67 (0.28-1.62)	0.52

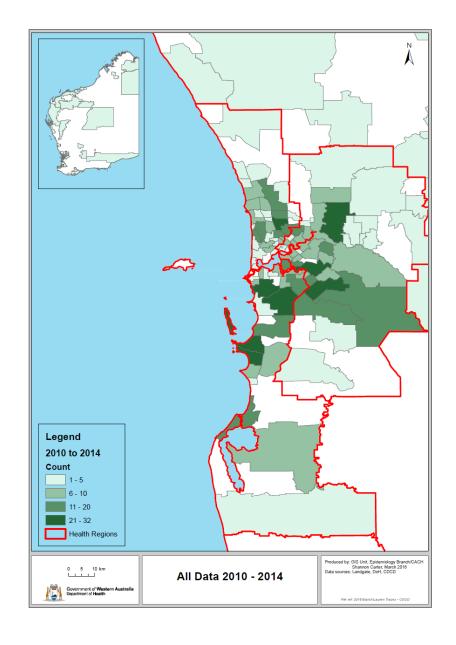
Table 1. The relationship between the prevalence of *C. difficile* in lawn and the age of the lawn, its size, sampling site, location, postcode, and season in Perth.

Peter Moono^{1,*}, Su Chen Lim^{1,*} & Thomas V. Riley^{2,3,4}

SCIENTIFIC **REPORTS** | 7:41196 | DOI: 10.1038/srep41196 Published: 01 February 2017

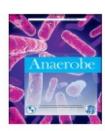
Lauren Bloomfield

Community- and healthcare-associated infections in females in WA, by age group, 2010 – 2014


Age group	CAI n (%)	HAI HCFO n (%)	OR (Cl ₉₅)
2 - 19 years	29 (43.9)	37 (56.1)	0.92 (0.48 – 1.76)
20 - 39 years	109 (67.2)	53 (32.7)	1.90 (1.19 – 3.05)
40 - 59 years	100 (39.3)	154 (60.6)	1.13 (0.77 – 1.67)
60 - 79 years	141 (31.8)	303 (68.2)	1.18 (0.88 – 1.58)
80+ years	116 (27.9)	300 (72.1)	0.86 (0.61 – 1.21)
Total	495 (57.0)	847 (52.8)	1.09 (0.93 – 1.30)

Maybe confounded by young families.

Food preparation
Washing, creating aerosols!
Contaminating benches
Preliminary study of 30 kitchens in
affluent part of Perth - 10% positive



Contents lists available at ScienceDirect

Anaerobe

Clostridioides difficile (including epidemiology)

Prevalence and molecular types of *Clostridioides* (*Clostridium*) difficile on Australian retail vegetables and household surfaces

Deirdre A. Collins ^{a,b,*,1}, Su Chen Lim ^{a,b}, Jessica Chisholm ^b, Molly Lattin ^c, Linda Selvey ^c, Simon Reid ^c, Thomas V. Riley ^{a,b,d}

Table 2

RTs of C. difficile isolated from household environmental and potato swabs, Queensland (QLD) and Western Australia (WA).

Ribotype	סָוֹס			WA			
	Chopping board	Fridge/pantry	Unwashed potato	Chopping board	Fridge/pantry	Unwashed potato	Total (%)
QX 690						5	5 (13.2)
056°		1	1		2		4 (10.5)
010	1	1					2 (5.3)
QX 014 ^a			2				2 (5.3)
QX 551			1			1	2 (5.3)
002ª					2		2 (5.3)
014/020 ^a					1		1 (2.6)
078 ^b			1				1 (2.6)
106 ^a		1					1 (2.6)
286						1	1 (2.6)
Others	3	2	4	1	3	4	17 (44.7)
Total	4	5	9	1	8	11	38 (100.0)

a Toxigenic strain (A+B+CDT-).

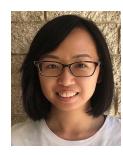
b Toxigenic strain (A + B + CDT+).

Gardening centres

~30% of samples positive for *C. difficile*Some obvious like animal manures
Some less obvious like compost/mulch
But expired vegetables from large
stores going into compost/mulch

DOI: 10.1111/jam.15408

ORIGINAL ARTICLE


J Appl Microbiol. 2022;133:1156-1168.

Whole-genome sequencing links *Clostridium* (*Clostridioides*) *difficile* in a single hospital to diverse environmental sources in the community

```
Su-Chen Lim<sup>1</sup> | Deirdre A. Collins<sup>1</sup> | Korakrit Imwattana<sup>2,3</sup> | Daniel R. Knight<sup>2,4</sup> | Sicilia Perumalsamy<sup>2</sup> | Natasza M. R. Hain-Saunders<sup>1,4</sup> | Papanin Putsathit<sup>1</sup> | David Speers<sup>2,5</sup> | Thomas V. Riley<sup>1,2,4,5</sup>
```


Su-Chen Lim

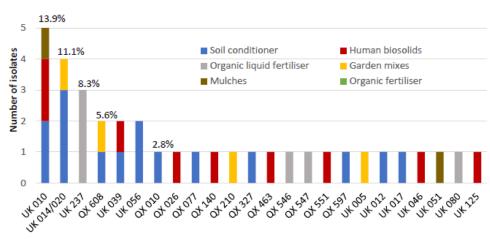


Figure 1. PCR ribotype of C. difficile isolates in gardening products

Brief Report

Clostridium difficile in soil conditioners, mulches and garden mixes with evidence of a clonal relationship with historical food and clinical isolates

January/February 2023 Volume 11 Issue 1

Spore-Forming *Clostridium* (*Clostridioides*) *difficile* in Wastewater Treatment Plants in Western Australia

Jessica M. Chisholm, ^a Papanin Putsathit, ^b Thomas V. Riley, ^{a,b,c,d} Su-Chen Lim^{a,b}

TABLE 1 Characteristics of wastewater treatment plants and the prevalence of C. difficile

		Final effluent receiving body	Final biosolids application	Prevalence, % (n)			
WWTP ^a	Treatment process			Influent	Effluent	Irrigation	Biosolids
W1	Preliminary, primary, secondary	Ocean		100 (11/11)	54.5 (6/11)		
W2	Preliminary, primary, secondary, anaerobic digestion of biosolids	Ocean, groundwater	Agricultural land	100 (11/11)	75.0 (3/4)		90.0 (9/10)b
W3	Preliminary, primary, secondary	Woodlot/wetland		87.5 (7/8)	30.0 (3/10)		
W4	Preliminary, primary, secondary	Groundwater		90.9 (10/11)	45.5 (5/11)		
W5	Preliminary, primary, secondary	Ocean, W7	Agricultural land	81.8 (9/11)	18.2 (2/11)		100 (14/14)
W6	Preliminary, primary, secondary	Groundwater		100 (10/10)	81.8 (9/11)		
W7	Microfiltration, reverse osmosis membrane	Ocean, groundwater	Agricultural land	75.0 (9/12)	0.0 (0/4)		100 (12/12)
W8	Preliminary, primary, secondary	Groundwater	Agricultural land	90.0 (9/10)	60.0 (6/10)		100 (12/12)°
W9	Preliminary, primary, secondary, filtration, chlorination, fluoridation, ultraviolet disinfection	Sport grounds, creek		90.9 (10/11)	10.0 (1/10)		
W10	Preliminary, primary	Ocean		90.0 (9/10)	100 (4/4)		
W11	Preliminary, primary, secondary, chlorination, lime amendment of biosolids	Ocean, sport grounds	Agricultural land	90.0 (9/10)	66.7 (6/9)	40.0 (2/5)	72.7 (8/11) ^d
W12	Preliminary, primary, secondary, anaerobic digestion of biosolids	Ocean, W7	Agricultural land	90.9 (10/11)	55.6 (5/9)		100 (11/11)
Total				90.5 (114/126)	48.1 (50/104)	40.0 (2/5)	94.3 (66/70)

aWWTP, wastewater treatment plant.

^bAnaerobically digested biosolids.

Untreated biosolids.

dLime-amended biosolids.

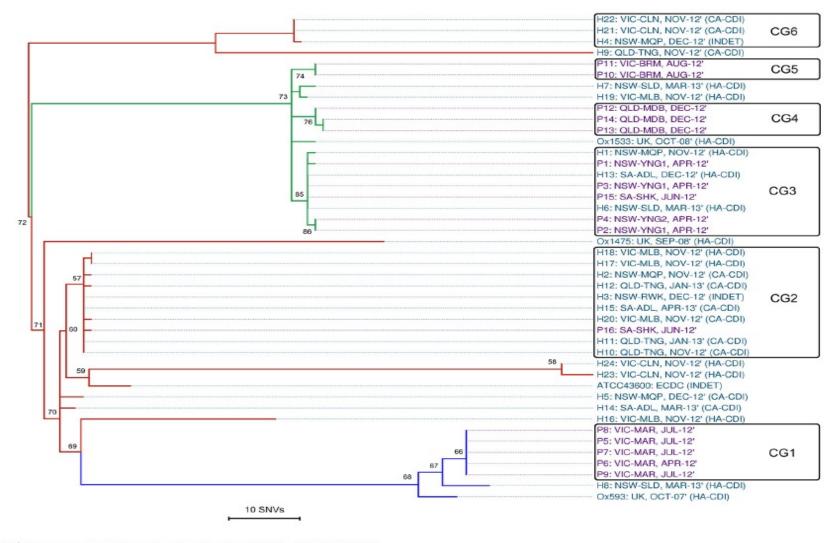
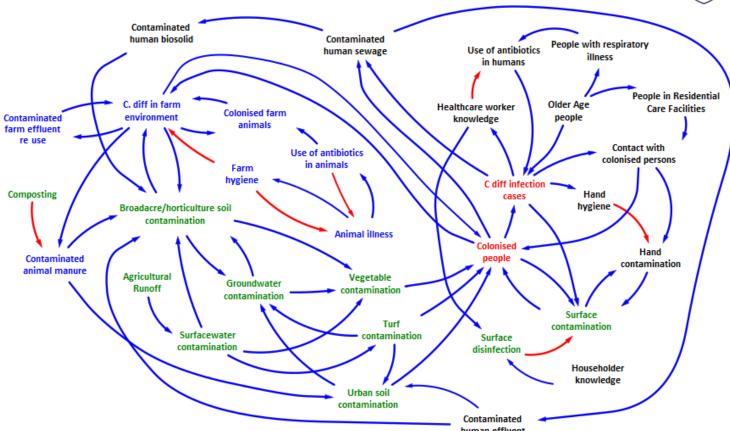
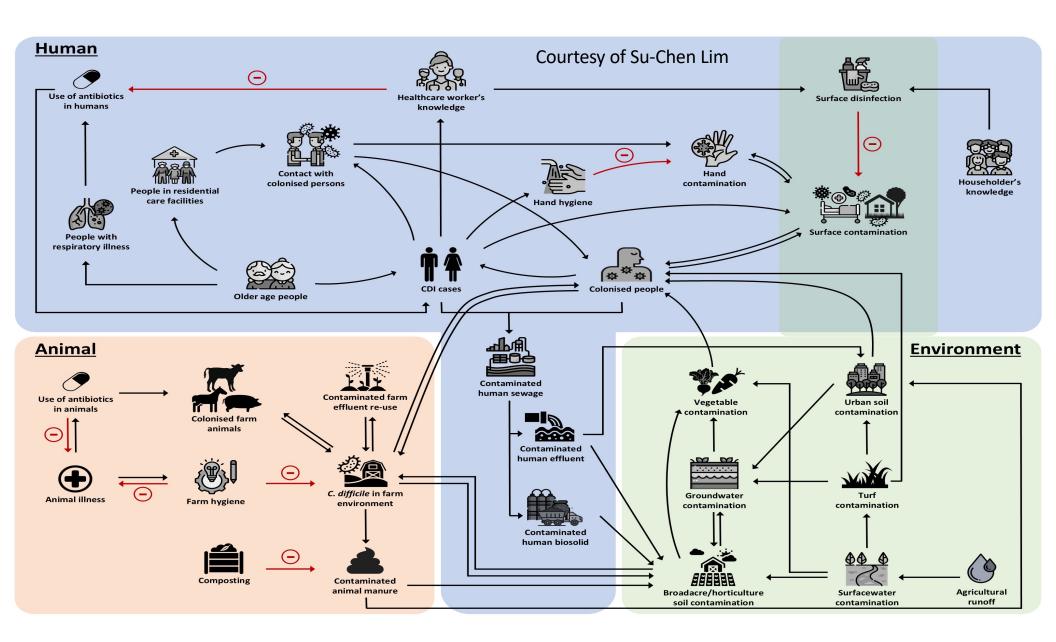


FIGURE 3 | Single nucleotide variant analysis of 44 C. difficile RT014.

Systems Dynamics was the One Health approach chosen


The modelling process used in Systems Thinking is iterative, and often participatory, to achieve consensus on the problem being modelled and to ensure the system structure is realistically replicated, revealing system behaviour that often deviates from initial expectations.

The process involved the following key steps:


- Stakeholder identification and problem scoping
- •Identifying key variables and their relationships
- Building a <u>Causal Loop Diagram</u>
- Identifying feedback loops
- Iceberg model development and analysis
- Leverage points (intervention strategies)

Courtesy of Oz Sahin, Simon Reid and Russell Richards @

Summary Causal Loop Diagram showing the key feedback loops associated with the transmission of *Clostridioides difficile* in Australia. Arrows denote the direction of the causal relationship. A blue arrow denotes a "positive (+)/same" relationship (both change in the same direction), and a red arrow denotes a "negative (-)/opposite" relationship (variables change in opposite directions, i.e. an increase in one causes a decrease in the other)

What does this teach us about IP & C?

- CDI not just a hospital issue, it's a worldwide public health issue.
- Geography is a guide to what strains of *C. difficile* will be found.
- Knowing the strain (RT or better ST) helpful.
- Each jurisdiction needs to understand its own back yard ie needs a reference laboratory!
- Many sources of *C. difficile* other than food important (such as gardens/lawn/WWTP effluent).
- Anywhere there is manure there is a problem!
- Putting antimicrobials into production animals is not a good idea.
- In Australia, we need a good study of CA-CDI involving GPs.
- Requires a One Health approach.

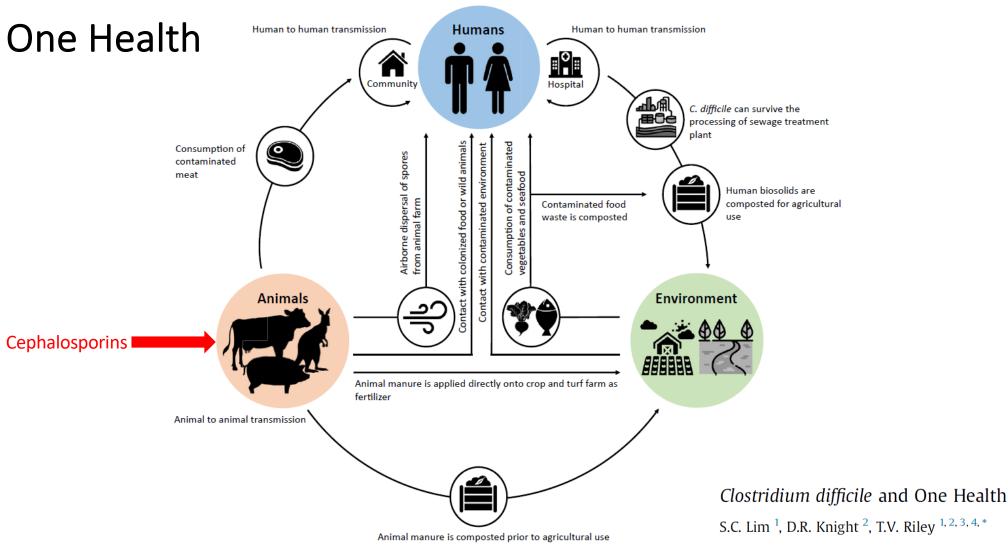


Fig. 2. Transmission of Clostridium difficile.

Clin MicrobiolInfect 2020;26:857

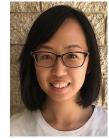
Acknowledgements

Australian Commission on Safety &

Quality in Healthcare

NH&MRC

Australian Pork Limited Meat & Livestock Australia Health Department of WA Otsuka Pharmaceuticals



Sicilia Perumalsamy Dan Knight Korakrit Imwattana Peng An Khun Niraj Shivaperumal Su Chen Lim Papanin Putsathit

Oxford University/PHL (Derrick Crook, David Eyre, Kate Dingle) Leeds University (Mark Wilcox) TechLab (Bob Carman, David Lyerly)

www.webbertraining.com

OCTOBER

- 2 ... Sustainable Healthcare and IPC: Can They Co-Exist? (an IFIC teleclass)
- Teleclass With Dr. Graham Pike, UK, and Profa. Dra. Camila Quartim de Moraes Bruna, Brazil
- Afro-European Clean Hospitals Day 2025: Human Factors and Collaboration
 - Teleclass With Dr. Alexandra Peters, Switzerland, and Dr. Martina Močenić, Croatia
 - 15 ... What Can Knowing Something About the Evolution of *Clostridium difficile* Teach Us About IPAC?

 Australasian
 - Teleclass With Prof. Thomas Riley, Australia
 - 23 ... Discussion: Are Current Healthcare Cleaning Guidelines Sufficient to Fight Antimicrobial Resistance Spread? With Dr. Jon Otter, UK & Dr. Curtis Donskey, US
- 28 ... Research Priorities to Strengthen Environmental Cleaning in Healthcare Facilities: the CLEAN Group

 Afro-European
 Teleclass Consensus

With Dr. Giorgia Gon, UK

NOVEMBER

- Afro-European The Use of Faecal Microbiota Transplant as Treatment for Clostridium difficile
 - Teleclass With Simon Goldenberg, UK
 - 13 ... Solve the LTC Outbreak!

With Steven J. Schweon

19 ... Special Lecture for World Toilet Day

DECEMBER

4 ... What's On a Surface Doesn't Stay On a Surface - The Dynamics and Risk of Microbial Resuspension From Surfaces

With Prof. Charles Gerba, US

- Afro-European Patience, Patients and Persistent Antimicrobial Resistance Teleclass With Colm Dunne, UK
 - 18 ... Empowering Patients to Prevent Healthcare-Associated Infections

With Dr. Curtis Donskey, US

Thanks to Teleclass Education PATRON SPONSORS

gamahealthcare.com