Environmental Infectious Disease Management in Healthcare Facilities
Dr. Andrew Streifel, University of Minnesota
A Webber Training Teleclass

Guidelines for Environmental Infection Control in HCF
- Seven major areas covered:
 - Air
 - Water
 - Environmental Services
 - Environmental Sampling
 - Laundry and Bedding
 - Animals in Healthcare Facilities
 - Regulated Medical Waste
- MMWR 6-03 was partial document
- 249 pg. with >1400 citations
- Appendices A – F

Guideline for Environmental Infection Control
Centers for Disease Control & Prevention
Heating, Ventilation & Air Conditioning
- Air handling systems in health care facilities
- Construction, renovation, remediation, repair and demolition
- Infection control and ventilation requirements for protective environments
- Infection control and ventilation requirements for airborne infection isolation
- Infection control and ventilation requirements for operating rooms

Ventilation Control in Hospital
- Airborne Infection Isolation & Protective Environment
 - outage control (planned or emergency)
 - ventilation assurance
 - air changes per hour - (6 to 15)
 - HEPA filtration - (90% to 99.97%)
 - pressurization - (2.5 Pascal’s = 0.01”wg)
 - monitoring
- Construction barriers
 - external project protection
 - internal barrier types
 - controlled airflow direction
 - monitoring

Human Source Airborne Infectious Diseases
- Tuberculosis
- Chicken pox
- Disseminating H. zoster
- Measles
- Smallpox
- Droplet nuclei <5μm particles

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Environmental Infectious Disease Management in Healthcare Facilities
Dr. Andrew Streifel, University of Minnesota
A Webber Training Teleclass

Fungi in the World
• >100,000 species
• about 100 human pathogens
• mostly skin pathogens
• small spores penetrate lungs
• essential to our survival

Aspergillus fumigatus
• prolific spore production

Costs of Aspergillosis
• In 1996 dollars, average cost $62,426
 – Range $52,670 - $72,181
• Often as a secondary diagnosis (73%)
 – Respiratory, neoplastic and HIV most common
 primary diagnosis
• Increased length of stay
 – Average hospitalization 17.3 days
 – Range 16.1 – 18.6 days
• Costs don’t include mortality

Common material such as gypsum board will grow mold. Some species are opportunistic infectious agents
- Aspergillus species
 – A. fumigatus, A. flavus,
 – A. terreus and A. niger

Mold digests cellulose for a source of cellulose. Add water to most organic material and mold will grow with water content >25% and a RH >95%

Selected Aspergillosis References
• Arnow
 – 1978 - internal construction with little control
 – 1991 - lack of maintenance with internal sources
• Sandhi
 – 1984 - external construction/defective air system
• Rhame
 – 1984 - natural ventilation
• Patterson
 – 1999 - Dumb weighter construction minimal barriers
• Thio
 – 2000 - depresurized protective rooms & building
• Hahn
 – 2002-differences in filter efficiencies & moldy material

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Refrinements of Environmental Assessment during an Outbreak Investigation of Aspergillosis Leukemia & BMT Unit, Thio, C. et al, ICHE. 2000

- 21 cases of invasive aspergillosis
- Depressurized oncology rooms 12/25 (-0.1 to -5.8 Pascal's)
- Sampling air did not detect A. flavus with 160 liters but 10/40 high volume samples (1400 liters) did detect
- Interventions: N95 masks, wet buffing, pressure management, portable filtration
- Ventilation not the source but construction due to:
 - Doors, poorly sealed windows
- Recommendation: novel protection, assess environment, >1000 liter/sample, comparison samples

Efficacy of HEPA Filtration in Preventing Aspergillosis in Immune-compromised Patients... Hahn, T. et al. ICHE. 2002

- 10/55 pts July to December 1992 developed invasive aspergillosis compared to 0/36 pts January to June 1992
- Leukemia patients not on BMT ward but regular rooms
- High volume (1700 liters) detected Aspergillus in air of regular rooms but not on BMT ward
- Regular room @ 90% filtration yet >150 cfu/m3 total fungi
 - compared to < 4 cfu/m3 on BMT ward BMT had 99.97% filters
- Contamination source on non-BMT was wet insulation which developed and infected patients
- Conclusion was to use HEPA filtration and maintain protective conditions albeit not as stringent as the BMT patient

INFECTION CONTROL RISK ASSESSMENT

- Recognizes risk to patients from ongoing construction, renovation and maintenance
- Implements safety measures to prevent exposure to common environmental hazards
- Provides guidance for surveillance of project and patients
- Multiple methods situation dependent to comply with safety measures for infection control

Summary of Outbreak Analysis

- Environmental disruption causes release of opportunistic microbes
- Lack of adequate ventilation
- Point source of microbial contamination
- Minimal protective measures
- Institution of protective measures reduces infection: construction management, masking, filtration, pressure control and procedural practice
- Infection Control Risk Assessment is necessary for patient risk reduction

Using an ICRA Matrix

1. Type of Project Activity
2. Patient Risk Groups
 - Immunocompromised
 - Invasive procedures/devices
3. Class of IC Precautions
 - Based upon parameters "IC Permit" assists documentation

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Environmental Infectious Disease Management in Healthcare Facilities
Dr. Andrew Streifel, University of Minnesota
A Webber Training Teleclass

Sample ICRA Matrix

<table>
<thead>
<tr>
<th>PATIENT Risk Group</th>
<th>TYPE A</th>
<th>TYPE B</th>
<th>TYPE C</th>
<th>TYPE D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW Risk Group</td>
<td>I</td>
<td>II</td>
<td>II</td>
<td>III / IV</td>
</tr>
<tr>
<td>MEDIUM Risk Group</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>HIGH Risk Group</td>
<td>I</td>
<td>II</td>
<td>III / IV</td>
<td>IV</td>
</tr>
</tbody>
</table>

ICRA Matrix at www.ashe.org
Internal Construction Risk Factor

- Dust containment, removal and moisture control
 - Educate construction workers and staff
 - Prepare the site
 - Notify staff, visitors, patients re: precautions
 - Relocating patients and moving staff as needed
 - Monitoring for adherence to infection control
 - HVAC system maintenance; water system
 - Daily clean-up and removal of debris

Control: Dust Containment

How would you handle this ceiling tile?

Portable containment on BMT unit

Filter verification

Portables filters
 - Airflow direction
 - Noise levels
 - Adaptability

Goal is to provide pressure differential and dilution ventilation to control respective airborne hazards.

Phasing plan for carpet removal

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Environmental Infectious Disease Management in Healthcare Facilities
Dr. Andrew Streifel, University of Minnesota
A Webber Training Teleclass

Filter in barrier
• dilution vent
• depressurization

A good idea may not work if the window is not sealed.

Negative pressure machine

EXTERNAL CONSTRUCTION MANAGEMENT
• Verification of existing protective ventilation
• Control of building entrances
• Window infiltration
• Utility tunnel access to construction
• Building tie-ins
• Employee training
• Street cleaning
• Emergency response

Filters not set in housing leak allowing particle bypass

Plugged air intake causes? decreased airflow

Building tie-in planning
Where are the air intakes?

Solutions for issues
• fan outage during penetration
• worker access control
• airflow control
• communication

Building tie-ins can be problematic
• noise & vibration
• relocate patients
• air infiltration
• barrier management

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Environmental Infectious Disease Management in Healthcare Facilities
Dr. Andrew Streifel, University of Minnesota
A Webber Training Teleclass

Ventilation Outage Planning

- Planned maintenance outages
 - critical areas - time limits
 - combining tasks for efficiency
 - patient protection
- Emergency Outages
 - backup motors, fan belts, bearings, etc.
 - redundant systems in critical areas
 - portable filtration contingencies

Emergency Planning for Physical Plant Disruption

- Develop contingencies for:
 - critical ventilation
 - water supply
 - loss of steam
- Water damage control
 - notification process
 - drying time < 72 hours
 - remediation precautions if moldy
 - certification after clean-up in critical areas

Buildings age when the ventilation is turned on

CAUSES OF VENTILATION DEFICIENCIES
- PLUGGED FILTERS
- PLUGGED TEMP CONTROL COILS
- DUCT LEAKAGE
- DUST ON FAN BLADES
- FAN BELT SLIPPAGE
- UNCALIBRATED CONTROL EQUIPMENT
- DIGITAL CONTROLS
- PNEUMATIC CONTROLS
- TEMPERATURE
- HUMIDITY SENSOR
- RECEIVER CONTROL

What is wrong with this picture??

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Environmental Infectious Disease Management in Healthcare Facilities
Dr. Andrew Streifel, University of Minnesota
A Webber Training Teleclass

Negative Pressure Room for Airborne Infection Isolation
- Negative pressure greater exhaust than supply air volume
- Pressure differential > 2.5 Pascal's or 0.01"w.g.
- Airflow differential > 125 cfm
- Sealed room, with about 0.5 sq. feet leakage
- Clean to dirty airflow
- >12 air exchanges per hour new or 6 ac/hr renovation
- Monitoring
- Exhaust to outside or HEPA filtered if recirculated

Intended usage's:
- Procedure/treatment rooms
- Bronchoscopy rooms
- Autopsy
- Emergency rooms

Positive Pressure Room Control for Protection From Airborne Environmental Microbes
- Pressure differential > 2.5 Pascal's or 0.01"w.g. ideal at 0.03"w.g or 8 Pascal's range from 2.5 to 8.0 Pa
- Positive pressure greater supply than exhaust air volume
- Greater than 125 cfm airflow differential supply vs exhaust
- Sealed room, about 0.5 sq. feet leakage
- Clean to dirty airflow
- Monitoring
- >12 air exchanges per hour
- Recirculate air back through filters

Intended usage's:
- Immune compromised patient rooms
- Operating rooms

Water Damage Management
- Reactive
 - Respond to water incident
 - Determine extent of water damage
 - Cut out or dry
- Proactive
 - Water resistant material
 - Preservative application
 - Proper installation

These parameters should be kept stable and should be checked when changes or adjustments are made in HVAC system.

Healthcare Construction: Case Studies in Medical Facilities
Moldy Sheetrock

Healthcare Construction: Case Studies in Medical Facilities
Mold Contaminated Wall Cavity
Environmental Infectious Disease Management in Healthcare Facilities

Dr. Andrew Streifel, University of Minnesota

A Webber Training Teleclass

Fungal growth

Water damage in relatively common in the janitor’s closet. Water resistant materials will prove to be value added to construction and renovation. Inspections should evaluate these water damage issues.

Water Intrusion Algorithms

Water Intrusion Algorithms are useful decision makers for water damage mold prevention.

- Keep moisture content <20%
- Maintain air movement
- Remove moisture physically
- Evaporation

Leak site

Even when rock is off the slab mold can grow when the water comes from above and is sealed behind the vinyl coving.

Contamination area defined

Keep the rock off the slab!

Wet test meter
- decision maker
- find the wetness
- drying time
- <72 hrs
- <20% moisture content

Microbes recovered:

Fitting floors during cleaning & non integral coving causes sheet rock to get wet and promote mold.

Moisture meters

- Use moisture meters during cleaning to detect wetness.
- Keep moisture content <20%
- Maintain air movement
- Remove moisture physically
- Evaporation

Water Intrusion Algorithms

- Know which moisture meter to use
- Dry it out <72 hrs
- Move occupants if possible

Hosted by Paul Webber paul@webbertraining.com

www.webbertraining.com
Source management of infectious diseases

- Airborne spread of infectious bacteria are relatively rare. Virus more common.
- Understand the difference of potential sources
- Environmental airborne fungi are common in some locations
- Immune compromised patients becoming more prevalent.
- Engineering controls help to minimize exposures to water bacteria and environmental mold.

Infectious Disease Management in Healthcare

- Complex balance of mechanical and operational issues
- Ventilation control essential to protect patients & personnel
- Source management of infectious agents essential
- Recognition of sources important for control
- Protective measures needed for prevention of infection
- Infection control risk assessment is a tool for proper means and methods in healthcare environment

Free Teleclasses in July & August

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 18</td>
<td>Infection Surveillance in the UK</td>
<td>Dr. Allan Johnson</td>
</tr>
<tr>
<td>July 27</td>
<td>Dermal Absorption of Alcohol Disinfectants</td>
<td>Dr. Axel Kramer</td>
</tr>
<tr>
<td>August 17</td>
<td>Avian Influenza – South Pacific Perspective</td>
<td>Dr. Lance Jennings</td>
</tr>
<tr>
<td>August 24</td>
<td>How to Assess the Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection and Sterilization Principles</td>
<td>Dr. William Rutala</td>
</tr>
</tbody>
</table>

For the full teleclass schedule – www.webbertraining.com