Personal Hygiene Measures to Prevent Influenza Transmission
Dr. Elaine Larson, Columbia University
Sponsored by Deb Canada www.debcanada.com

Personal Hygiene Measures
to Prevent Transmission of
URIs and Influenza
Elaine Larson RN, PhD, FAAN, CIC

Hosted by Paul Webber paul@webbertraining.com
Sponsored by Deb Canada www.debcanada.com

Principles of Transmission*
• Influenza viruses are highly contagious and transmitted easily by large-particle droplets from infected people and via direct contact
• Precautions to stop droplet transmission are the cornerstone of influenza prevention (besides vaccination)
• Transmission requires close contact because droplets do not remain suspended in the air and generally travel only short distances, usually 1 meter or less, through the air

– Adapted from the Draft WHO Guidelines on Hand Hygiene in Health Care, part of the Global Patient Safety Challenge, 1/06

So what’s the evidence?

Handwashing Trial in Pakistan
• 25 neighborhoods randomized to handwashing intervention; 11 neighborhoods were control
• One year trial
• Children <5 yrs in intervention homes had 50% reduction in pneumonia (all causes) (95% CI: -6% to -41%)
• No difference between plain or antibacterial soap

Studies in Child Care Centers

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butz, 1990</td>
<td>Alcohol hand sanitizer, diapering pads and gloves</td>
<td>NS difference in URI symptoms</td>
</tr>
<tr>
<td>Krilov, 1996</td>
<td>Environmentally cleaning, particularly toys</td>
<td>Decreased URI (0.67 vs 0.42/child/mth, p<0.07)</td>
</tr>
<tr>
<td>Niffenegger, 1997</td>
<td>Instructional program on hand hygiene and germs</td>
<td>Fewer URIs in intervention group (p<0.05)</td>
</tr>
<tr>
<td>Carabin, 1999</td>
<td>Hygiene program and coliform counts on hands</td>
<td>Reduced rates of URIs (RR=0.8, 95% CI: 0.68–0.93)</td>
</tr>
</tbody>
</table>

Studies in Child Care Centers

(n=6)

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Personal Hygiene Measures to Prevent Influenza Transmission

Dr. Elaine Larson, Columbia University

Sponsored by Deb Canada www.debcanada.com

Studies in Child Care Centers

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roberts, 2000</td>
<td>23 large child care centers (Australia)</td>
<td>Handwashing, aseptic nose wiping, Fewer URIs in children ≤24 mths (11.4 vs. 13/child year, p=0.01)</td>
</tr>
<tr>
<td>Ponka, 2004</td>
<td>60 child care centers (Finland)</td>
<td>Handwashing, environmental cleaning, washing toys and linens, ~26% fewer URIs in children <3 years (p=0.05)</td>
</tr>
</tbody>
</table>

Studies in Schools (n=6)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master, 1997</td>
<td>One school, Scheduled handwashing throughout day</td>
<td>NS difference in absence due to URI</td>
</tr>
<tr>
<td>Dyer, 2000</td>
<td>One school, cross-over design</td>
<td>Benzalkonium rinse-free hand hygiene product, Reduced URIs by 30.9% (p=0.02) and 76% (p=0.001)</td>
</tr>
<tr>
<td>Hammond, 2000</td>
<td>16 schools</td>
<td>Alcohol hand hygiene product, URI absenteeism reduced 19.8% (p<0.05)</td>
</tr>
</tbody>
</table>

Other Study Settings

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsey, 1999</td>
<td>One senior day care center</td>
<td>Alcohol hand hygiene product, Non-significant difference in URI rates</td>
</tr>
<tr>
<td>White, 2005</td>
<td>As above</td>
<td>Alcohol hand hygiene product, 40% reduction in absences from illness (p<0.001)</td>
</tr>
</tbody>
</table>

Studies in Homes (n=2)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larson, 2004</td>
<td>238 households</td>
<td>Antibacterial cleaning and soap products, NS difference in URI symptoms</td>
</tr>
<tr>
<td>Santora, 2005</td>
<td>292 homes with child in day care</td>
<td>Alcohol hand hygiene product, 40% reduction in absences from illness (p<0.001)</td>
</tr>
</tbody>
</table>

Alcohol-based Hand Sanitizer Reduction in Respiratory Illness (n=4)

<table>
<thead>
<tr>
<th>Author (Year) Group</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kotch et al., (1994) US, Daycare</td>
<td>15%</td>
</tr>
<tr>
<td>Falsey et al., (1999) US, Elderly Daycare</td>
<td>17%</td>
</tr>
<tr>
<td>White et al., (2001) US, University</td>
<td>20%</td>
</tr>
<tr>
<td>Sandora et al., (2005) US, Families</td>
<td>14%</td>
</tr>
</tbody>
</table>

*P < 0.05, statistically significant

**Not statistically significant
Summary

• Results for hand hygiene are equivocal but promising, perhaps due to level of adherence to intervention or the intervention only addressed one of the two major modes of transmission
• Effective practices must target modes of transmission
 – Alcohol to sanitize hands (direct contact)
 – Respiratory etiquette (droplet spread)

To prevent direct contact spread

Rubbing hands with an alcohol-based formulation is the first choice:
• Fast-acting and broad-spectrum activity
• Excellent microbicidal characteristics
• Lack of potential emergence of resistance
• No sinks, running water or towels needed
• Reduces the time required to perform the action

Other Precautions to Prevent Direct Contact Transmission

• ‘Aseptic’ nose wiping (plastic around the tissue)
• Frequent washing of toys and other objects, particularly those handled by children
• Don’t go to work when ill!

To prevent droplet spread

• Common sense measures such as
 – In case of coughing or sneezing:
 Use a single-use handkerchief or paper tissue
 Cough etiquette (cough into your upper arm)
 – Keep persons with respiratory infections at a distance > 1 meter
• Mask/eye protection?

Herbs and Vitamins?

• Vitamin C
• Vitamin E
• Echinacea
• Zinc
• Ginseng

Educational Materials: Hands

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Personal Hygiene Measures to Prevent Influenza Transmission
Dr. Elaine Larson, Columbia University
Sponsored by Deb Canada www.debcanada.com

Education: Droplet Spread

Stopping URIs and Flu in the Family: The Stuffy Trial
CDC U01 CI000442

Specific Aims

- To compare the impact of three household-level interventions on six outcomes
- Intervention groups:
 - Culturally appropriate educational materials
 - Educational material and alcohol-based hand sanitizer
 - Educational materials, alcohol-based hand sanitizer AND face masks

Study Outcomes

- Incidence and types or strains of virologically confirmed influenza
- Rates of symptoms of influenza and viral URIs
- R0, i.e. the number of secondary cases generated by a single infected person in a fully susceptible household
- Self-reported antibiotic use practices for symptoms of influenza and other viral URIs
- Household member knowledge of prevention and treatment strategies
- Rates of influenza vaccination among household members.

Influenza vaccination rates, National Health Interview Survey, 2003

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>Influenza Vaccination Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged >65 years</td>
<td>65.5%</td>
</tr>
<tr>
<td>Persons with high risk conditions (e.g. diabetes, emphysema, heart diseases, cancer)</td>
<td>15.8-46.3%</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>12.8%</td>
</tr>
<tr>
<td>Healthcare professionals</td>
<td>40.1%</td>
</tr>
<tr>
<td>Household contacts of persons at high risk</td>
<td>14.9-38.4%</td>
</tr>
<tr>
<td>Children aged 6-23 months</td>
<td>Data not provided</td>
</tr>
</tbody>
</table>

Log counts on hands of homemakers using antimicrobial (AM) or plain soap for handwashing

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Personal Hygiene Measures to Prevent Influenza Transmission
Dr. Elaine Larson, Columbia University
Sponsored by Deb Canada www.debcanada.com

Rates of at least one infectious disease symptom/household month

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Unadjusted Rate</th>
<th>Adjusted Rate</th>
<th>P-value</th>
<th>RR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibacterial group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>10.2 (142/1396)</td>
<td>11.9 (159/1341)</td>
<td>0.21</td>
<td>0.84</td>
<td>0.63</td>
<td>1.12</td>
</tr>
<tr>
<td>Sore throat</td>
<td>10.0 (140/1396)</td>
<td>10.3 (138/1341)</td>
<td>0.83</td>
<td>0.95</td>
<td>0.71</td>
<td>1.26</td>
</tr>
<tr>
<td>Runny nose</td>
<td>26.8 (374/1395)</td>
<td>25.6 (343/1341)</td>
<td>0.57</td>
<td>1.03</td>
<td>0.81</td>
<td>1.32</td>
</tr>
<tr>
<td>Cough</td>
<td>23.2 (324/1396)</td>
<td>23.6 (316/1341)</td>
<td>0.86</td>
<td>0.97</td>
<td>0.79</td>
<td>1.18</td>
</tr>
</tbody>
</table>

* GEE logistic regressions adjusted for number of children under 6, number of people rating health as poor/fair or had chronic conditions, size of the household and number of people spending 40 hours or more outside of house per week.

Precede-Proceed Model:
Conceptual underpinnings to identify barriers and facilitators to use of antimicrobials for viral URIs

Study Design

Volunteer Households (n=450)

Randomize

Control (education only)
Alcohol hand hygiene product
Alcohol + Face masks

15 month follow-up: Daily symptom reports, bimonthly visits, cultures if symptomatic

Components of interventions using the Green model

<table>
<thead>
<tr>
<th>Group</th>
<th>Model Component</th>
<th>Intervention Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>Pamphlet and information sheet on where to get flu vaccine</td>
<td></td>
</tr>
<tr>
<td>Both Intervention Groups</td>
<td>Preferring factors (knowledge, attitudes, beliefs)</td>
<td></td>
</tr>
<tr>
<td>Hygiene group</td>
<td>Alcohol-based hand sanitizer provided to household members</td>
<td></td>
</tr>
<tr>
<td>Hygiene and face mask</td>
<td>Alcohol-based hand sanitizer and face masks provided to household members for use among household contacts of persons with symptoms of influenza</td>
<td></td>
</tr>
<tr>
<td>All study groups</td>
<td>Reinforcing factors</td>
<td></td>
</tr>
</tbody>
</table>

Setting

- Northern Manhattan
- About 80% Hispanic, half born outside U.S.
- Lower income, often without health insurance
- Crowded housing (average: 4.5 persons/one bedroom apartment)

Initial Home Visit

- Obtain written consent
- Administer questionnaires:
 - a demographic questionnaire
 - a knowledge and attitude survey regarding causes, prevention strategies and treatments for colds and flu
 - a questionnaire about antibiotic practices
- Orient household members

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Data Collection

- Daily telephone reporting using ecological momentary assessment technology
- Bimonthly home visits
- Calls to participants not reporting for 48 hours

Algorithm for screening persons with influenza-like illness

- Influenza-like illness: 45 individuals/month (450 over 10 months)
- Rapid Test (for Flu A, Flu B), assume ~ 70% sensitivity
 - POSITIVE (up to 315)
 - NEGATIVE (True - and False -) (Up to ~135 false negatives expected)

Subtype of influenza positive

Algorithm:

1. Culture to confirm
2. Subtype

Subtype of influenza positive

Influenza-like illness: ~ 45 individuals/month (450 over 10 months)

The Next Few Teleclasses

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 25</td>
<td>Twenty First Century Plagues</td>
<td>Prof. Robert Pratt, Thames Valley University</td>
</tr>
<tr>
<td>February 8</td>
<td>Influenza – Of Poultry, Pets and People</td>
<td>Dr. Corrie Brown, University of Georgia</td>
</tr>
<tr>
<td>February 15</td>
<td>Fresh Produce and Human Pathogenicity</td>
<td>Prof. Keith Warriner, Guelph University</td>
</tr>
<tr>
<td>February 21</td>
<td>Infection Control in the Endoscopy Clinic</td>
<td>Dr. Richard Everts, Nelson Marlborough Health Service</td>
</tr>
<tr>
<td>February 22</td>
<td>Best Practice for Hospital Construction Management</td>
<td>Andrew Streifel, University of Minnesota</td>
</tr>
</tbody>
</table>

For the full teleclass schedule – www.webbertraining.com
For registration information: www.webbertraining.com/howtoct.php

- Save More Than 30% On Teleclass Registration Fees
 - One registration for all 2007 teleclasses
 - Access every live teleclass in 2007
 - Automatic free registration for all teleclass topics added mid-season
 - Support infection control education in developing nations
 - Receive a copy of all 2006 teleclass recordings on CD
 - Access private teleclass recordings & notes, available only to Full Year Subscribers

2007 Full Year Subscription

For more information contact: subscriptions@webbertraining.com