Emergence and Epidemiology of Community-Associated Methicillin-Resistant Staphylococcus aureus in the United States

Rachel J. Gorwitz, MD MPH
Centers for Disease Control and Prevention
Atlanta, GA

Overview

- Background / Terminology
- Outbreak Investigations
- Community emergence
- Reasonable approaches to prevention and control (Expert Panel Summary)

Community-Associated Methicillin Resistant Staphylococcus Aureus
Dr. Rachel Gorwitz, CDC
Sponsored by JohnsonDiversey www.johnsondiversey.com

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com

MRSA is an emerging community pathogen among patients without established risk factors for MRSA infection (e.g., recent hospitalization, recent surgery, residence in a long-term-care facility, or injecting-drug use).

MMWR 48:707; 1999

Four Pediatric Deaths from Community-acquired Methicillin-Resistant *S. aureus* -- Minnesota and North Dakota, 1997-1999

Terminology

- Terminology has been inconsistent
- Community-Onset (CO) MRSA: infection diagnosed or index culture collected in community
- Established risk factors (RFs): recent hospitalization, surgery, dialysis, long-term care; indwelling catheter or percutaneous medical device; history of MRSA
- Community-Acquired MRSA: Used for CO infections or CO infections in patients without established RFs, but difficult to establish with certainty where acquisition occurred
- Community-Associated MRSA: CO infections in persons without established RFs

Bacteriologic Differences in CA-MRSA and HA-MRSA Isolates

<table>
<thead>
<tr>
<th>Antimicrobial resistance</th>
<th>CA-MRSA</th>
<th>HA-MRSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Few agents</td>
<td>Multiple agents</td>
<td></td>
</tr>
<tr>
<td>SCCmec (genetic element carrying mecA resistance gene)</td>
<td>Type IV</td>
<td>Type II</td>
</tr>
<tr>
<td>PFGE Types</td>
<td>USA 300, 400</td>
<td>USA 100, 200</td>
</tr>
<tr>
<td>PVL toxin gene</td>
<td>Common</td>
<td>Rare</td>
</tr>
</tbody>
</table>

Panton-Valentine Leukocidin (PVL) Toxin

- Necrotizing cytotoxin
- Associated with abscesses and severe pneumonia
- Also found in some methicillin-susceptible *S. aureus* (MSSA) isolates

Terminology

- “CA-MRSA” now sometimes used to refer to MRSA strains with certain bacteriologic properties
- However:
 - No definitive bacteriologic criteria for community strains
 - Attributes may change over time, particularly if community strains become established in healthcare settings or vice versa (differences in selective pressures, interchange of genetic material)
 - Eventually may be impossible to distinguish CA-MRSA and HA-MRSA

CA-MRSA Outbreaks
Community-Associated Methicillin Resistant Staphylococcus Aureus
Dr. Rachel Gorwitz, CDC
Sponsored by JohnsonDiversey www.johnsondiversey.com

CA-MRSA Outbreaks
• Often first detected as clusters of abscesses or “spider bites”
• Various settings
 – Sports participants: football, wrestlers, fencers
 – Correctional facilities: prisons, jails
 – Military recruits
 – Daycare and other institutional centers
 – Newborn nurseries and other healthcare settings
 – Men who have sex with men

Competitive Sports

August 22, 2003 / 52(33);793-795

CA-MRSA Abscesses among Professional Football Players
(Kazakova et al NEJM 2005;352:468-75)
• MRSA abscesses in 5/58 players at sites of turf burns
• Association with:
 – BMI>30
 – Lineman/Linebacker
 – Recent antibiotic use
• Abx use
 – 2.6 scripts/yr for Rams
 – 0.2 scripts/yr for gen pop’n
• No MRSA on colonization survey or environmental sampling

CA-MRSA Abscesses among Professional Football Players
(Kazakova et al NEJM 2005;352:468-75)
• Observational:
 – Trainers providing wound care had no access to hand hygiene
 – Towels frequently shared
 – Players often did not shower before using whirlpool
 – Weight-training equipment not regularly cleaned
• Transmission controlled with improved wound care, targeted therapy, enhanced hygiene

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Turf Burns

Prevention and Control

- Cover all wounds
- Train athletes in first aid for wounds and signs of infection
- Encourage good hygiene
- Discourage sharing of items
- Establish routine cleaning schedules for shared equipment
- Encourage players to report skin lesions

Correctional Facilities

Methicillin-Resistant *Staphylococcus aureus* Skin or Soft Tissue Infections in a State Prison – Mississippi, 2000 (MMWR 2001 50:919-22)

- 59 skin infections in 3000 inmate prison
- Case-patients frequently reported: helping or being helped by other inmates with wound care, lancing own or other inmates' boils with fingernails or tweezers, sharing potentially contaminated personal items (linen, pillows, clothing, tweezers)
- High nasal carriage rate of MRSA (4.9%)

MRSA Outbreaks in Correctional Facilities

- Georgia
- California
- Texas

Intervention to Reduce the Incidence of MRSA Skin Infections in a Correctional Facility in Georgia (Wooten et al ICHE 2004;25:402-7)

- 16 cases of MRSA skin lesions in 200-bed detention center
- Prior to intervention:
 - Co-pay required for clinic visit
 - Lesions treated with warm compresses and topical antibiotics (no capacity for I&D)
 - Soap kept in locked drawers
- Rates declined significantly after implementing measures to improve skin disease screening, personal hygiene, wound care, and antimicrobial therapy
Community-Associated Methicillin Resistant Staphylococcus Aureus
Dr. Rachel Gorwitz, CDC
Sponsored by JohnsonDiversey www.johnsondiversey.com

Contributing Factors to MRSA Spread in Correctional Facilities
• Barriers to routine hygiene
 – Access to soap limited
 – Mental health problems contributed to poor adherence
 – Improper handling of laundry
• Barriers to inmates accessing the medical system
 – Cost
 – Language and literacy
 – Fear
• Barriers within the medical system
 – Frequent medical staff turnover and understaffing
 – Limited services available (e.g., no I & D)
 – Lack of coordination between facilities
• Unrecognized cause of skin infections
 – Cultures rarely performed; lesions attributed to spider bites
• Crowding

Prevention and Control
• Collaborated with Bureau of Prisons*
 – Implement skin infection screening and monitoring
 – Culture suspect lesions and provide targeted therapy
 – Improve inmate hygiene (education, availability of soap, etc)
 – Improve access to wound care and trained healthcare staff
 – Additional interventions (antiseptic washes, nasal decolonization) to be considered in consultation with public health

Military Trainees

Military Training Facility, 2001-2003 Cases of CA-MRSA Soft Tissue Infections

Zinderman, Emerg Infect Dis Vol 10, May 2004 941-944

Military Training Facility, 2001-2003 Cases of CA-MRSA Soft Tissue Infections

Zinderman, Emerg Infect Dis Vol 10, May 2004 941-944

Other Outbreaks

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Community-Associated Methicillin Resistant Staphylococcus Aureus
Dr. Rachel Gorwitz, CDC
Sponsored by JohnsonDiversey www.johnsondiversey.com

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com Page 6

Skin Infections in a Religious Community

- 24 confirmed or probable cases
- Antibiotic use in past year and use of community sauna were independently associated with disease
- MRSA (different from outbreak strain) isolated from sauna
- Transmission interrupted with multifaceted intervention and closing sauna

Skin Infections in a Religious Community

Tattoo Recipients

- Outbreaks reported in several states associated with licensed and unlicensed tattooing
- Investigations underway
- Tattoo parties, improvised equipment

Hospital Transmission of CA-MRSA

- Hospital transmission of CA-MRSA among post-partum women, NY (Saiman L, CID, 2003;37:1313-9)
- CA-MRSA in a NICU, TX (Healy CM, CID, 2004;39:1460-6)

CA-MRSA outbreaks among otherwise healthy full-term newborns

- Clusters of MRSA skin infections among newborns delivered at a common facility
- Onset of symptoms in 1st few weeks of life – usually about a week after discharge from term nursery
- No risk factors for acquisition following discharge identified
- Resolved after reinforcement of nursery infection control practices and, in some cases, decolonization of colonized health care workers

CA-MRSA Causing Infections In the Hospital – Uruguay 2002-2004

- Number of infections by quarter for Asocacion Espanola, Uruguay
Benoit, Estivariz EIS Uruguay Trip Report July 2002-July 2004
Community-Associated Methicillin Resistant Staphylococcus Aureus
Dr. Rachel Gorwitz, CDC
Sponsored by JohnsonDiversey www.johnsondiversey.com

CA-MRSA Outbreaks: Summary

A Few CA-MRSA Strains Cause Most Community Outbreaks

CA-MRSA: Factors for Transmission

Transmission Dynamics CA-MRSA Outbreaks

CA-MRSA Outbreak Control Measures

- Multi-component strategies used (difficult to assess individual contribution of each)
- Strategies focusing on increased awareness, early detection and appropriate management, enhanced hygiene, and maintenance of a clean environment appear to have been successful at interrupting transmission

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
CA-MRSA: Emergence in the Community

Methicillin-Resistant Staphylococcus aureus in Three Communities

- Fridkin SK. NEJM 2005;352:1436-44.
- Emerging Infections Program – Active Bacterial Core Surveillance (ABCs)
 - 2001-2002
 - Atlanta, Baltimore, Minnesota
 - Laboratory-based surveillance, all culture-confirmed (invasive and non-invasive) infections in surveillance area
 - Determined absence of established risk factors by record review, patient interview

CA-MRSA Prevalence Varies by Region

- Healthcare-Associated MRSA
- Community-Associated MRSA

CA-MRSA Prevalence in Three Sites – ABCS/EIP

Incidence of CA-MRSA Disease in Atlanta and Baltimore, According to Race and Age Group

- Atlanta, 2001-2002
- Baltimore, 2002

CA-MRSA Incidence Varies by Race

- African American
- White
- Total

Incidence of CA-MRSA by Race, ABCS/EIP

CA-MRSA Predominantly Causes Skin Disease

<table>
<thead>
<tr>
<th>Disease Syndrome</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin/soft tissue</td>
<td>1,266 (77%)</td>
</tr>
<tr>
<td>Wound (Traumatic)</td>
<td>157 (10%)</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>64 (4%)</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>61 (4%)</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>43 (3%)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>31 (2%)</td>
</tr>
</tbody>
</table>
Infecting Strain of CA-MRSA Often Resistant to Prescribed Antimicrobial

- 73% of CA-MRSA infections treated initially with an antimicrobial to which the infecting strain was resistant
- Among patients with SSTIs, therapy to which the infecting strain was resistant did not appear to be associated with adverse outcomes

CA-MRSA in Hawaii, 2001-2003

- Retrospective chart review of patients with MRSA infection, 2001-2003
- Four health-care facilities (40% of acute care beds):
 - Children and woman’s center
 - Private urban clinic
 - County urban hospital
 - Rural community hospital

Increase in CA-MRSA Infections, Hawaii 2001-03

Estivariz EIS ‘03

CA-MRSA Prevalence Varies by Age, Hawaii 2001-2003

Estivariz EIS ‘03

Race Distribution of Case-patients Hawaii, 2001-2003

- P<0.05 for CA-MRSA vs expected
- Data from 2001 Hawaii Health Survey, HI State DOH

S. aureus Community-Acquired Pneumonia Following Influenza-Like Illness, 2003-4

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median [range]</td>
<td>21 (8 mos.-62 yrs)</td>
</tr>
<tr>
<td>Sex, female</td>
<td>9 (52)</td>
</tr>
<tr>
<td>MRSA</td>
<td>15 (88)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>10 (59)</td>
</tr>
<tr>
<td>Black</td>
<td>7 (41)</td>
</tr>
<tr>
<td>Underlying disease*</td>
<td>5 (29)</td>
</tr>
<tr>
<td>MRSA risk factors</td>
<td>4 (24)</td>
</tr>
<tr>
<td>Documented influenza vaccination</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

*One each: Diabetes, multiple sclerosis, abdominal wall malformation, cystic fibrosis, chronic lung disease
S. aureus Community-Acquired Pneumonia Following Influenza-Like Illness, 2003-4

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No./ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence of preceding influenza illness</td>
<td>n=17</td>
</tr>
<tr>
<td>Clinical symptoms only</td>
<td>5 (29)</td>
</tr>
<tr>
<td>Laboratory Confirmed</td>
<td>12 (71)</td>
</tr>
<tr>
<td>Rapid antigen test</td>
<td>10 (59)</td>
</tr>
<tr>
<td>Paired serology</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Fluorescent antibody staining</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Hypotension (systolic<90mmHg)</td>
<td>7 (41)</td>
</tr>
<tr>
<td>Leukopenia (WBC < 3,500/mm^3)</td>
<td>4 (24)</td>
</tr>
<tr>
<td>Thrombocytopenia (<150,000/mm^3)</td>
<td>4 (24)</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>16 (94)</td>
</tr>
<tr>
<td>ICU (8 intubated)</td>
<td>13 (81)</td>
</tr>
<tr>
<td>Death (Median Age = 28)</td>
<td>5 (29)</td>
</tr>
</tbody>
</table>

Eight Indistinguishable MRSA Patterns from CAP Patients

<table>
<thead>
<tr>
<th>State</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas</td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
</tr>
</tbody>
</table>

S. aureus Colonization
NHANES Nasal Swab Survey 2001-2, Kuehnert et al.

CA-MRSA Prevention and Control

CA-MRSA Expert Panel Summary

Rachel J. Gorwitz, MD MPH
Division of Healthcare Quality Promotion
National Center for Infectious Diseases

Prevention and Control of Community-Associated Methicillin-Resistant Staphylococcus aureus

CA-MRSA Transmission

Community Group Setting

- MRSA
 - Differs from hospital strains
 - PVL toxin +
 - Resistant to standard therapy

- Skin Abscesses
 - Crowding
 - Contaminated items or environment
 - Contact
 - Compromised skin
 - Cleanliness

- MRSA
- No. (%)
Clinical Considerations

MRSA belongs in the differential diagnosis of skin and soft tissue infections (SSTI's) compatible with S. aureus infection:
- Abscesses, pustular lesions, “boils”
- “Spider bites”
- Cellulitis?

Clinical Considerations - Evaluation

Increase Awareness

Clinical Considerations - Evaluation

Collect Diagnostic Specimens

Obtain material for culture
- Guides clinical management
- Contributes to knowledge of local prevalence, epidemiology, susceptibility patterns

Clinical Considerations - Management

Incision and Drainage Should Be Routine

Primary therapy for abscesses
- May be adequate sole therapy in some circumstances
- Provider education / refreshers on appropriate technique may be necessary

Adequate Follow-Up Must be Maintained

Develop follow-up plan for all non-hospitalized patients
- Instructions to return if:
 - Develop systemic symptoms
 - Worsening local symptoms
 - No improvement in 48-72 hours
Clinical Considerations - Management

Empiric Antimicrobial Therapy May Be Needed for SSTIs

- Significant associated cellulitis
- Systemic signs of illness
- Associated co-morbidities

Antimicrobial Selection

- Beta-lactams still appropriate first-line therapy for SSTIs in some circumstances?
- Take into account:
 - Local prevalence of MRSA
 - Severity of illness
 - Patient co-morbidities

Antimicrobial Selection (SSTIs)

- Alternate agents:
 - Clindamycin
 - TMP/SMX
 - Tetracyclines
 - Rifampin (in combination with other agent)
 - Linezolid
- More data needed to establish effectiveness!

Inducible Clindamycin Resistance

- Mediated by \textit{erm} gene
- Isolates appear macrolide (erythromycin)-resistant and clindamycin-susceptible on routine susceptibility testing
- In vitro resistance to clindamycin can occur during a course of therapy
- Detected by a D-test, or double disk diffusion test
- Clinical implications of positive D-test unclear, but should check for inducible resistance and avoid clindamycin if detected

Not optimal for MRSA:

- Macrolides
- Fluoroquinolones
- High prevalence of resistance or potential for rapid development of resistance

Use Local Data for Treatment

- MRSA prevalence and susceptibility to alternate agents vary geographically
- Local epidemiologic risk factors may be useful in assessing likelihood of MRSA in a given patient

DRAFT
Clinical Considerations

Patient Education

- Critical component of case management
 - Wound care
 - Hygiene
 - Hand washing
 - Regular bathing
 - Avoid sharing of potentially contaminated objects

Management of Household Clusters and Recurrent Disease

- Education is critical
- Instruct patients and household members to seek care early so that prompt appropriate treatment of new infections can be provided
- Decolonization???

Clinical Considerations

Decolonization Regimens

- Topical Nasal Agents
 - Mupirocin, Others
- Antiseptic Body Washes
 - Chlorhexidine, Others
- Oral antimicrobials
 - TMP/SMX + Rifampin, Others
 - Infected individuals only
- Single, short courses

Management of Household Clusters and Recurrent Disease: Decolonization

- Data from healthcare settings (pre-op, dialysis, long-term care):
 - Regimens can be effective in eliminating colonization, at least in the short term
 - Effectiveness in preventing disease less clear
- Almost no data on effectiveness in community setting
- Resistance can emerge
- Basic strategies should be optimized first

Public Health Intervention

When to Investigate

- Consider investigation when culture-proven MRSA cases have been detected in a cluster among epidemiologically-linked individuals in the community
Public Health Intervention

When to Investigate

- Decision to investigate should take into account various factors
 - Number of cases and temporal proximity of the cluster
 - Setting in which transmission is occurring
 - Severity of illness among cases
 - Presence of ongoing transmission or recurrent illness among cohort members
 - Host factors of those likely to be infected
 - Likelihood that an intervention could be successfully implemented

Components of Interventions

- Enhance surveillance
- Target empiric therapy to the pattern of the outbreak strain
- Educate on wound care and wound containment
- Promote enhanced personal hygiene and limit sharing of personal items
- Consider excluding patients from certain activities
- Achieve and maintain a clean environment

Risk Factor Study?

- Can be labor and resource intensive
- Not always necessary for outbreak management
- Consider when:
 - Cluster occurs in a new setting
 - Results are likely to:
 - Directly impact control efforts
 - Contribute to general understanding of the disease and future prevention efforts

Colonization Swab Surveys?

- Have been used in many published investigations
- Yield has often been low
- Not generally necessary to direct control and prevention efforts
- May be useful:
 - To determine extent of or identify risk factors for transmission (“carrier-control” study)
 - To contribute to the understanding of CA-MRSA epidemiology (non-nasal colonization sites)

Decolonization?

- No data to support efficacy in preventing disease transmission in the community; trials are needed.
- Control of previous outbreaks has been achieved without use of decolonization
- Emphasis should be placed on basic control strategies first

Conclusions

- Various studies are underway and more are needed to determine best methods for control and prevention of MRSA in the community
- Strategies focusing on increased awareness, early detection and appropriate management, enhanced hygiene, and maintenance of a clean environment appear to have been successful
Community-Associated Methicillin Resistant Staphylococcus Aureus
Dr. Rachel Gorwitz, CDC
Sponsored by JohnsonDiversey www.johnsondiversey.com

CA-MRSA Working Group Meeting
Participants, July 2004

Gordon L. Archer
Carol L. Baker
Elizabeth Bancroft
Henry F. Chambers
Robert S. Daum
Jeffrey S. Duchin
Monica Farley
James Hadler
Jim Jorgensen
Sheldon K. Kaplan
Newton E. Kendig
Kathleen Harriman
Franklin D. Lowy
Ruth Lynfield
J. Kathryn MacDonald
Loren Miller

Gregory Moran
Olga Nuno
John H. Powers
L. Barth Reller
Nalini Singh
Marcus Zervos
Craig Zinderman

CDC
Daniel B. Jernigan*
John Jernigan*
Jay C. Butler
Denise Cardo
Roberta Carey
Rachel Gorwitz
Jeffrey C. Hageman
Thomas Hennessy
James M. Hughes
Jean Patel
Fred Tenover
J. Todd Weber

*Meeting Co-Chair

Rachel Gorwitz, MD MPH
RGorwitz@cdc.gov
Division of Healthcare Quality Promotion
National Center for Infectious Diseases

Enhanced Recordings
on CD

See the entire topic list at
www.webbertraining.com/product.cfm
(Note, there's one free CD in the list)