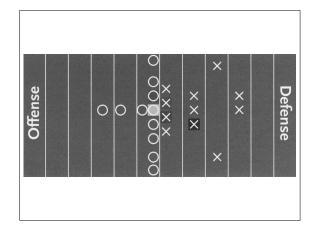
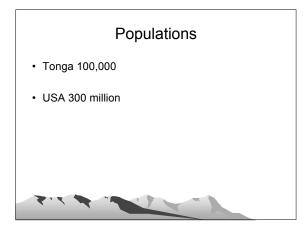
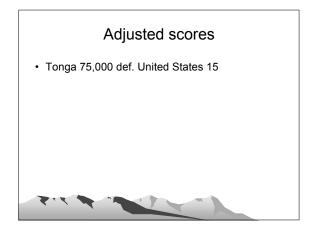
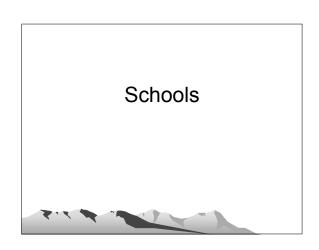
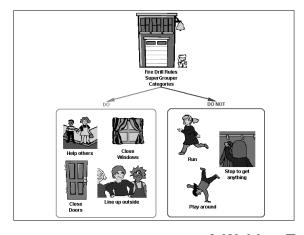

A Webber Training Teleclass
Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com










A Webber Training Teleclass
Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com

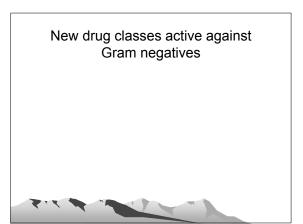
Rugby World Cup 2007 • Tonga 25 defeated USA 15

A Webber Training Teleclass
Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com

Explosion of interest in ESBLs

- 1386 articles published with the key-word "betalactamase" in the last 2 years
 - 338 articles on ESBLs
- 259 abstracts with the key-word "betalactamase" at ICAAC 2007
 - 118 abstracts on ESBLs

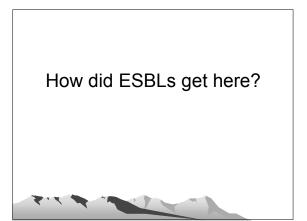
A Webber Training Teleclass
Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com


Overview • What is an ESBL? • Impact of ESBL production on outcome • Special issues in Enterobacter, Salmonella and Proteus • Infection Control Implications

New drugs against MRSA/VRE

- · Quinupristin-dalfopristin
- Linezolid
- · Tigecycline
- Daptomycin
- Dalbavancin
- Telavancin
- CeftobiproleCeftaroline

There are more than 200 beta-lactamase types in Gram negative bacilli

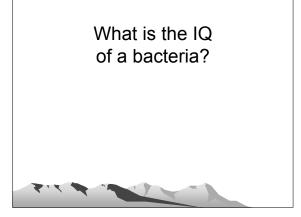

- · Class A: TEM-1,2; SHV-1; ESBLs, KPC
- · Class B: MBLs
- · Class C: AmpC
- Class D: OXA

ESBLs are beta-lactamases which:

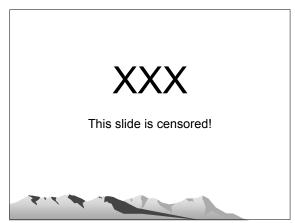
- Hvdrolyse third generation cephalosporins (and aztreonam, penicillins and many other cephalosporins)
- · Do not appreciably hydrolyse cephamycins (cefoxitin or cefotetan) or carbapenems
- · Are inhibited by beta-lactamase inhibitors such as clavulanic acid

Why is E. coli frequently resistant to ampicillin?

- June 1964 ampicillin released in Europe
- December 1964 the first case of ampicillin resistant E. coli detected
- · Mrs Temoneira (Athens, Greece)
 - Urinary isolate of E. coli
 - Produced beta-lactamase (TEM-1)
 - Genes encoding the beta-lactamase were on a


The cephalosporins

- · Discovery in Italy
- 3rd generation cephalosporins developed in part in response to the worldwide proliferation of beta-lactamases active against ampicillin and first generation cephalosporins



Bacteria vs. the drug industry

- Third generation cephalosporins (cefotaxime) marketed in Germany in September 1981
- In March 1982 in Frankfurt, Klebsiella isolates were discovered which were resistant to cefotaxime! This was the first known ESBL producer

ESBLs- What are They? • Extended • Spectrum • Beta • Lactamases

Common ESBL producers

- · Klebsiella pneumoniae
- · Escherichia coli
- · Proteus mirabilis
- Enterobacter cloacae
- Non-typhoidal Salmonella (in some countries)

ESBLs are rare in:

- Pseudomonas aeruginosa
- · Acinetobacter baumannii
- While these organisms can become very resistant, this is not actually due to ESBLs

Case study

- 63 year old man presents with acute onset of abdominal pain
- · Mass found on physical examination
- Goes to laparotomy
- · Found to have colonic tear and faecal peritonitis
- Long and stormy course with subsequent intraabdominal abscess with ESBL producing Klebsiella pneumoniae

Traditional view of "who gets ESBL producers"

- · Hospitalised patients
 - ICU
 - Long length of stay
 - Lots of procedures and tubes
- · Nursing home patients

Community-acquired ESBL producers

- First became a problem in Canada, Spain and the United Kingdom
- While many "community-acquired" cases were actually from residential care homes or recently hospitalised patients, some were truly from the community

Importance of community-acquired ESBL producers

- All of the first line options for communityacquired UTI are lost
 - Trimethoprim
 - Trimethoprim/sulfamethoxazole
 - Gentamicin
 - Ceftriaxone
 - Ticarcillin/clavulanate
 - Piperacillin/tazobactam
 - Ciprofloxacin

ESBL types

- · Hospital ESBLs are of TEM or SHV type
- · Community ESBLs are of CTX-M type
 - Very closely related to chromosomal beta-lactamases of Kluyvera spp.
 - Most commonly occur in E. coli

Why are they becoming more frequent?

- J. Pitout et al. Emergence of E. coli clone ST131 producing CTX-M-15 in the Calgary Health Region. ICAAC 2007
- Canadian strains identical to those in Europe, India and Asia

ESBL producing E. coli - INDIA

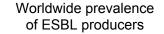
- CTX-M-15 is the overwhelmingly dominant
 - Evaluation of isolates collected in the late 1990s suggest it was well-established in the "E. coli gene pool" almost a decade ago
 - Often ciprofloxacin and aminoglycoside resistant
 - No dominant clone but almost always associated with a large (>100kb) plasmid

Ensor JAC 2006; Walsh JAC 2007

ESBL-producing E. coli - CHINA

- · CTX-M types more diverse, but especially CTX-
- · Emergence of community-acquired ESBL producing E. coli in Hong Kong
- · ESBL producing E. coli in farm animals (chicken, ducks, pigs, cattle) in Guangdong Province and Hong Kong

Liu Int J Antimicrob Agents 2007; Duan Microb Drug Resist 2006; Ho JAC 2007


- Y. Doi et al. Cephalosporin resistant E. coli from retail meat in the United States and Spain. **ICAAC 2007**
- CTX-M producing E. coli grown from chicken purchased at supermarkets

Some examples of agricultural antibiotic use

- · Quinolones in animal feed
- · Ceftiofur injected into eggs
- · Fluconazole sprayed onto citrus fruit

- Doi et al. Emerging Infectious Diseases 2007
- · Chicken, beef, pork, turkey purchased in supermarkets
- E. coli cultured from meat
- · 85% samples harboured E. coli resistant to third generation cephalosporins - the majority of these produced AmpC beta-lactamases not **ESBLs**

	Kpn	E.coli
USA	5.3%	2.8%
Latin America	27.6%	12.0%
Northern Europe	5.2%	1.4%
Southern/East. Europe	25.7%	6.6%
China	37.3%	31.3%
Australasia	4.6%	1.6%

Asia, Latin America and E. Europe – over the counter dispensing of antibiotics

- "Ten well-trained medical students (simulated patients) presented to 40 drug stores with common complaints such as urethral discharge, acute watery diarrhoea"
- "Most antibiotics were dispensed inappropriately with respect to choice of drug and duration of treatment"

Thamlikitkul JAC 1988

Non-judicious dispensing of antibiotics by drug stores

- Six internists were trained as mock patients who pretended to have a friend with a common syndromic illness
- Acute fever, tender maxillary sinus with nonpurulent discharge
 - 23 received norfloxacin
 - 20 received ofloxacin

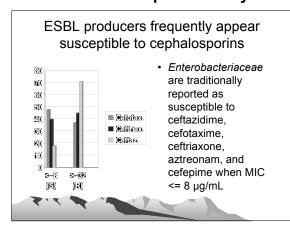
Anucha Apisarnthanarak ICHE June 2008

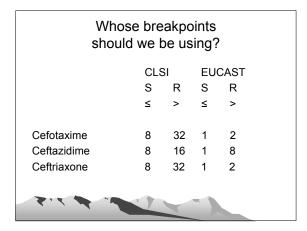
Implication of ESBL production

- Diminished susceptibility to cephalosporins, penicillins and aztreonam
- Therefore:
 - risk of inadequate empiric therapy if these antibiotics are used
 - risk of increased use of other antibiotic classes

Are ESBL producers associated with higher mortality?

- Meta-analysis of mortality from bacteremia with ESBL producers [Schwaber JAC Nov 2007]
 - 16 studies from 2000-2006
 - Crude mortality 34% (199/591) for ESBL producers vs. 20% (216/1091) for non-ESBL
 - Pooled RR 1.85; 95% CIs 1.39-2.47
- Delay in effective therapy in up to 44% patients with ESBL producers [Schwaber JAC Nov 2007; Goff ICAAC 2006]

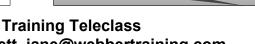

Carbapenems - treatment of choice for serious infections with ESBL producers


- Carbapenems are not hydrolyzed by ESBLs to any great extent
- Success rates with carbapenems for ESBL producers consistently exceed 80%, and in no study has the outcome with carbapenems been surpassed [Paterson CID 2004; Bhavnani DMID 2006; Zanetti AAC 2003]

Another implication of ESBL producers

- · More carbapenem use
- This translates to more carbapenem resistant organisms
 - KPC producers
 - CRAB
 - Carbapenem resistant *Pseudomonas*

Summary of problem · Micro labs need to be "switched on" to detect **ESBLs**


Newer cephalosporins · Cephalosporins plus beta-lactamase inhibitors · Cefepime · Cephamycins · Ceftobiprole

Cefepime and ESBL producers

- · In general, I would avoid using cefepime as treatment of ESBL producers
- · High doses (eg, 2 grams q 8hrs) may have satisfactory success with low MIC organisms $(MIC \le 1 \mu g/mL)$

Should breakpoints be changed and ESBL detection abandoned?

- · NO infection control implications are minimized without this information
- Therapeutic implications
 - Inoculum effect, while debatable, may be clinically important

Ticarcillin/clavulanate

- Very little clinical data on Tic/clav versus ESBL producers
- Ticarcillin is intrinsically inferior to piperacillin versus Klebsiella
- Would not recommend its use for ESBL producers

Tigecycline

- Active against 93.7% of ESBL producers using EUCAST breakpoint of 1 µg/mL [Morosini AAC Aug 2006]
- Peak serum concentrations are only 0.67 µg/mL so would urge caution for treating bloodstream infections
- · Poorly excreted in urine
- · Pneumonia study inferior to imipenem in VAP
- · No published clinical experience thus far

Carbapenems - treatment of choice for serious infections with ESBL producers

- Carbapenems are not hydrolyzed by ESBLs to any great extent
- · Minimal inoculum effect
- Success rates with carbapenems for ESBL producers consistently exceed 80%, and in no study has the outcome with carbapenems been surpassed [Paterson CID 2004; Bhavnani DMID 2006; Zanetti AAC 2003]

Which carbapenem?

- · Most data has been with imipenem/meropenem
- · Ertapenem and ESBL producers
 - 91% (10/11) patients with bacteremia were successfully treated
 - 83% (19/23) patients with complicated UTI were cured
 - 3 patients had development of ertapenem resistance during prolonged therapy [Munoz ICAAC 2004]
 - Combinations of beta-lactamase production plus impermeability/efflux appear responsible [Szabo AAC 2006; Woodford ICAAC 2006 – C1-34]

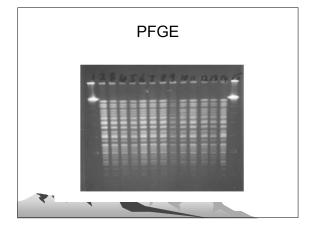
Doripenem

- · Now FDA approved
- Appears highly active vs. ESBL producers

 $\begin{array}{ccc} & & MIC_{50} & MIC_{90} \\ E. \ coli & \leq 0.06 & \leq 0.06 \\ K. \ pneumoniae & \leq 0.06 & 0.12 \\ P. \ mirabilis & 0.12 & 0.25 \end{array}$

[Fritsche ICAAC 2006 – E219]

Salmonella and ESBLs


- · No ESBLs in S. Typhi
- Implication is for non-typhoidal salmonella invasive infections in children where cefotaxime/ceftriaxone is widely used empirically

Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com

What should we do in the hospital for ESBL producers?

- > 50 outbreaks of infection with ESBL producers (affecting >5000 patients) have been reported worldwide in which methods were used to ascertain the genotypic relatedness of strains
- IN EVERY REPORTED OUTBREAK, COMMON STRAINS WERE ISOLATED FROM > 2 PATIENTS

Routes of infection

- · ESBL producers act like VRE
- · Faecal colonization
- · Skin colonization
- Transient contamination of the hands of staff Coulter et al
 - : 13% of "ambushed" ICU nurses had positive hand cultures

Removable environmental foci are rare

- · Ultrasound gel
 - Gaillot J Clin Micro 1998
- · Glass thermometers used per axilla
 - Rogues J Hosp Infect 2000
- Contaminated bronchoscope
- · Nurse with chronic hand carriage
 - AM Allworth (personal communication)

Arresting outbreaks

- · Traditional Infection Control
 - Perform rectal swabs on patients in the same ward as infected patients
 - "Contact isolation" for patients infected OR colonized
 - Add alerts to medical charts to inform staff of ESBL + positive status on readmission, transfer etc

Importance of ESBL detection

 Numerous examples exist in which small outbreaks of infection with ESBL producers have been completely halted by use of "traditional" infection control procedures

For example,

- screening for asymptomatic carriers
- "contact isolation"
- attention to handwashing

Rectal swabs and ESBL producers

- Not recommended hospital wide unless there is a massive outbreak
- · Would target high-risk areas
 - ICUs
 - Transfer from residential care facility
 - Areas with outbreaks

"Clearing" an ESBL Positive Patient

- Most likely there will be some ongoing gut colonisation
- ESBL "positivity" will be enhanced by recent receipt of antibiotics
- · Some institutions say positive for life
- Others say (1) wait 6 months, (2) if 3 negative rectal swabs then clear

Highly endemic situations - does infection control work? At end of 1991, contact 140 isolation commenced 120 At end of 1992, multiple other measures 100 introduced based on 3(0) ■ 17(m) discussions with ICU 60 osessy) nurses 200 Lucet CID 1999

Antibiotic utilization measures

- Numerous studies have linked usage of third generation cephalosporins with advent of ESBL producing Klebsiella
- Replacement of cephalosporins with other classes has resulted in reduction in isolation of ESBL producers
 - : cefepime (Mebis Leukemia 1998)
 - : pip/tazo (Rice CID 1996)
 - : tic/clav (Coulter 1995)

Why will we have an escalation in these problems in the future?

- · Bacterial genetics
 - Selection of resistant mutants
 - Acquisition of genetic material from other bacteria
- · Human factors
 - Antibiotic regimens for increasingly difficult patients
 - Use of antibiotics in agriculture
 - Hand hygiene
 - Pharmaceutical industry

The effects of space travel on antibiotic resistance

- Tixador R et al. Acta Astronaut 1985;12:131-134
- Cytos 2 experiment (French-Soviet manned flight July 1982)
- Bacteria became less resistant when taken into outer space

It is not rocket science....

- · Clean your hands between patients
 - Beware taking herpes simplex, ESBLs, C. difficile and MRSA home with you!
- Antibiotics are not the answer for every culture or every fever
- Clinicians hold the key to solving these emerging resistance problems

Don't forget

- Don't be dismayed outbreaks of ESBL producers can be controlled
- Carbapenem resistance in Klebsiella, E.coli or Enterobacter is an infection control emergency
- · Think of the environment as well as hands

