Basic Microbiology
Jim Gauthier, Providence Care
A Webber Training Teleclass

Welcome to the Bug Man's World!
And yes, it's a Small World!

Jim Gauthier
Hosted by Paul Webber
paul@webbertraining.com
www.webbertraining.com

Objectives
- Be at ease with the terminology
- Understand normal vs. abnormal flora
- Demystify all the Latin and Greek (ya, right)!
- See some of the wonders of the microbial world

The Basics
The bugs are small – 2-5 microns (10^-6 meters)
- Viruses are even smaller – nanometers (10^-9)
Classification based on three things:
- Shape
- Gram Reaction
- Growth Requirements

The Basics
Microscopes give a phenotype view
- Phenotype: what you can see
Growth and playing gives the genotype view
- What it can do because of genetics
Staff generally wants the results yesterday!

The Basics
Most human pathogenic bacteria take 18-24 hours
to grow enough on the laboratory media to be
visible and to be able to distinguish single colonies
with the naked eye.
Sensitivity testing from a pure culture can be
anywhere from 4 – 24 hours later.
Full identification can also take up to 24 – 48 hours.

Identification
- Oxygen requirements
- Able to ferment or oxidize sugars to produce acid end
products
- Temperature ranges
- Salt tolerance
- Chemical tolerance
- Enzymes
- Motile

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Identification

- PCR, Gene probes
 - In use more and more
 - Chlamydia, GC, Tuberculosis, MRSA, VRE
 - Norovirus
- ELISA
 - Organism is an antigen and reacts with labelled antibody
 • Influenza, RSV, Rotavirus

The Basics- Terms

- Bacteria can either grow or not grow in the presence of oxygen
- Oxygen: **Aerobic** (Pseudomonas, Bacillus)
- No Oxygen: **Anaerobic** (Clostridium, Bacteroides)
- Either: **Facultative Anaerobe** (E. coli)

The Basics - Terms

- Hemolysis
 - Beta: complete destruction of the red blood cells in the (sheep) blood agar plate
 - Alpha: partial destruction of the cells, leaving a greenish hue to the blood
 - Gamma: old term, no hemolysis

The Basics - Terms

- Catalase
 - Tests the organism’s ability to liberate oxygen from hydrogen peroxide
 - Main distinguishing feature between Staphylococci and Streptococci / Enterococci
 - Pure organism placed into H₂O₂ – observe!

The Basics - Terms

- Coagulase
 - The ability of the organism under study to clump, clot, or coagulate rabbit plasma, turning a solution from liquid to semi-solid
 • Can use plasma or latex particles
 - Used as main identification of Staphylococcus aureus, distinguishing it from other Staph. species.

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
- Quantitation of growth based on how many organisms are present in a certain inoculum
- Growth medium first used by Robert Koch

The Gram Stain
- Developed in the late 1800's by Dr. Gram, a pathologist
- Originally noted while staining lung (more trivia)
- Gram positive organisms are purple
- Gram negative organisms are red
- Based on cell wall composition
Cell Wall Composition – Simple!

Gram Stain

- Gives a quick look at the specimen
 - Presumptive identification
- Can interpret quality of specimen
 - Number of “pus” (polymorphonuclear) cells present
 - Infection
 - Number of epithelial cells present
 - Surface
 - Number of bacteria present (and likely Genus)
 - Normal vs. abnormal

Gram Stain

- Can help direct antibiotic therapy
 - Based on cell wall composition
- Not so helpful if lots of normal flora present
 - Throats, stool, decubital ulcers
- Quite significant on sterile body sites
 - CSF and other fluids
 - Aspiration from petechiae
 - Assists in the interpretation of culture results

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Intracellular Gram-negative diplococci

Biochemical Identification

Use various sugars and substrates to detect ability to ferment, oxidize or use an enzyme.
Most of this is now automated.

Sensitivity Testing

Basic Microbiology
Jim Gauthier, Providence Care
A Webber Training Teleclass

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Kirby-Bauer

http://www.life.umd.edu/classroom/bsci424/LabMaterialsMethods/AntibioticDisk.htm

VITEK Card Convenience
- Compact
 - easy to handle
 - space saving
 - low waste volume
- Sealed
 - spill resistant
 - safe disposal
- No reagents to add

Naming Scheme

Gram Positive
- Aerobic Cocci
 - Staphylococcus, Streptococcus*, Enterococcus* spp.
- Anaerobic Cocci
 - Peptostreptococcus, Peptococcus spp.
- Aerobic Bacilli
 - Bacillus, Listeria, Corynebacterium, Erysipelothrix spp.
- Anaerobic Bacilli
 - Clostridium, Propionibacterium spp.

Gram Negative
- Aerobic Cocci
 - Neisseria, Moraxella (Branhamella) spp.
- Aerobic Bacilli
 - Haemophilus*, Pseudomonas, Stenotrophomonas spp.
- Facultative Anaerobic
 - Escherichia, Klebsiella, Enterobacter spp.
- Anaerobic
 - Prevotella, Bacteroides spp.

Staphylococci
- Catalase Positive
- Coagulase divides group into Staph. aureus, and coagulase negative Staph.
 - Allows Staph. aureus to be a great pathogen, as it can cover itself in a coagulated shield of plasma, evading treatment
- All are potential pathogens

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Staphylococci

- *Staph. aureus* can be normal flora
 - Nose, skin, vagina, rectum, feces, mouth
- All CNS are considered skin flora
 - Presence in blood or sterile body fluid needs to be interpreted carefully
 - Collection is very important
 - antiseptics

Streptococci, Enterococci

- Catalase negative
- **Streptococci**
 - Facultative anaerobic
 - Normal flora – alpha haemolytic
 - Oral flora, viridans streptococci, *Str. pneumoniae*
 - Pathogenic – beta haemolytic
 - Groups A – G potential pathogens

β-Streptococcus

Enterococci

- Gut flora
 - Over half of the bacteria in feces can be Enterococci
- Not very virulent
 - Third leading cause of urinary tract infections
 - Fecally contaminated abscess
 - Resistance
 - VRE

Gram Negatives

- **Neisseria**
 - *N. gonorrhoea, N. meningitidis*
 - Pathogenic
 - *N. lactamica, N. sicca*
 - normal respiratory flora
- **Moraxella catarrhalis**
 - Many name changes, potential pathogen
 - Neisseria, Branhamella

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Haemophilus
- Coccobacilli
- Normal flora of throat, nose
- "Satellites" around Staph. aureus
- Finicky growth requirements
- Was leading cause of meningitis in children until HIB vaccine developed

Enterobacteriaceae
- Gram negative, facultative ArO$_2$ rods
- All ferment glucose
- Catalase positive
- Many are gut flora
- Many cause nosocomial infections
- Many are referred to as "coliforms"—From the gut
- Grow on MacConkey Agar—selective-differential

Other Gram Negatives
- Pseudomonas species
 - Environmental bugs
 - Think "water"
- Stenotrophomonas maltophilia
 - Opportunistic
 - Think "sink drain"

Hosted by Paul Webber paul@webbertraining.com www.webbertraining.com
Other Gram Negatives

- *Acinetobacter calcoaceticus*
 - anitratus, lwofli
 - Think oral contamination
 - Many are very resistant to antibiotics

Clostridia

- Anaerobic Gram positive bacilli
- Spore bearing
- *C. perfringens*
 - Gas gangrene
- *C. difficile*
 - Antibiotic associated diarrhea
- *C. tetani*
 - tetanus

Yeasts

- Single cell organisms
- Numerous species
 - Candida albicans
 - Germ tube test
- Opportunistic
 - Normal respiratory flora
- Urinary, vaginal, systemic

Germ Tubes

Mycobacteria

- Do not stain with Gram’s stain
- Use carbol fuchsin, heated, then decolorize with HCl and alcohol for 5 minutes
 - Acid fast (AFB)
 - Retain red color
- *M. tuberculosis (MTb) [human pathogen]*
- *M. avium-intracellulareae (MAI) [HIV]*
Mycobacteria

- Divide once every 24 hours
 - 2-8 weeks for visible colonies
- Some environmental species
 - M. gordonae, M. marinum
- MOTT: Mycobacterium other than TB

Unusual Organisms?

- “Atypical” respiratory and genital pathogens
- Mycoplasma
 - No cell wall, just cell membrane
 - Very fastidious to grow and stain
 - Not Gram!
- Ureaplasma ureolyticum
- Chlamydia
 - pneumonia, trachomatis

What is a virus?

- Viruses are NOT like bacteria!
- Viruses are NOT little bacteria
- Viruses DO NOT “grow” or divide
- Viruses make copies of themselves using:
 - Tools (enzymes, proteins) they code for
 - Cell machinery

What is a Virus?

- Obligate intracellular parasite
 - “Pirate of the cell”
- NOT a cellular organism
 - No organelles or ribosomes, energy-less
- NOT FREE-LIVING
 - Completely dependent on host cells

Viruses

- Enveloped
 - Easier to kill, less hardy
- Non-enveloped
 - Hardy, resistant to lower concentrations of alcohol
- Both DNA and RNA viruses

Normal Flora

- Positive culture doesn’t necessarily mean infection or clinical significance
- Many organisms are part of the “normal flora” of that site
- Most surface and mucosal surfaces are not “sterile” and are loaded with bacteria

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Basic Microbiology
Jim Gauthier, Providence Care
A Webber Training Teleclass

Vaginal Flora of Normal Women

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>5 - 10</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>50</td>
</tr>
<tr>
<td>Group B Strep</td>
<td>20 - 30</td>
</tr>
<tr>
<td>Group A Strep</td>
<td>3</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>15</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>15 - 20</td>
</tr>
<tr>
<td>Gardnerella</td>
<td>>50</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>>50</td>
</tr>
<tr>
<td>Peptococcus</td>
<td>80</td>
</tr>
<tr>
<td>Peptostreptococcus</td>
<td>30</td>
</tr>
<tr>
<td>Bacteroides</td>
<td>15 - 35</td>
</tr>
<tr>
<td>Fusobacteria</td>
<td>10</td>
</tr>
<tr>
<td>Clostridia</td>
<td>5 - 10</td>
</tr>
<tr>
<td>Yeast</td>
<td>15 – 30 (30-40 if pregnant)</td>
</tr>
</tbody>
</table>

Normal Respiratory Flora

- Oral anaerobes
 - Fusobacterium, Bacteroides, Peptostreptococcus
- Streptococci esp. viridans group
- Neisseria spp. (incl. meningococcus)
- Corynebacterium spp.
- Haemophilus spp.

Normal Respiratory Flora

- S. pneumoniae
- H. influenzae
- S. pyogenes (Group A)
- M. catarrhalis
- Enterobacteriaceae
- Yeast

But these are also important & recognized causes of pneumonia

Never Normal Flora

- Mycobacterium tuberculosis
- Legionella spp.
- Brucella spp.
- etc.

Not Normal But May Still Be Asymptomatic

- Neisseria gonorrhoeae
- Salmonella spp.
- Bacillus anthracis
- etc.

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Basic Microbiology
Jim Gauthier, Providence Care
A Webber Training Teleclass

What we Won’t Get To!
- Other Anaerobes
- Actinomycetes
 - Norcardia, Rhodococcus, Streptomyces
- Gardnerella
- Brucella, Francisella, Bordetella
- Parasites
- Fungus

Summary
- The names may change but the bugs stay the same
 - Please don’t get mad at the lab!
- Not as rapid a science as we would like
- Take a good swab to get good results!

Thanks!
Dr. Baldwin Toye, MD, FRCPC
Head, Division of Microbiology
Infectious Diseases Consultant
The Ottawa Hospital
Associate Professor, University of Ottawa

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com