Biofilms: When the Bugs Get Clingy
Dr. David Hammer, Canterbury Health Laboratories, Christchurch
A Webber Training Teleclass

BIOFILMS
When the bugs get clingy

David Hammer
Canterbury Health Labs
Christchurch, New Zealand

“I only know that I know nothing.”
– Socrates

>99% microbes live in a biofilm

• Whereas conventional microbiology has concentrated on planktonic organisms
• So what?

You can’t solve a puzzle …

by looking at only a part of it.

Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com
Biofilms: When the Bugs Get Clingy
Dr. David Hammer, Canterbury Health Laboratories, Christchurch
A Webber Training Teleclass

What is a Biofilm?
• Structured, co-operative microbial community embedded in an extracellular matrix, usually attached to a surface
• Free-floating (planktonic) cells attach to become sessile
• Biofilm organisms usually express a different phenotype

Planktonic vs Sessile Bugs
• Planktonic
 – From Greek ‘wandering’
 – Free floating form
• Sessile
 – From Latin ‘sitting’
 – Fixed to a site (usually an organic/ inorganic surface)

Consider barnacles.

Barnacle lifecycle

The Usual Suspects
• Gram positives
 – Staphylococcus aureus
 – Coagulase negative Staphs
 – Enterococci
• Gram negatives
 – Pseudomonas
 – Proteus
• Candida

Small Colony Variants
• Phenotype switching
• Grow much slower, if at all
• More adherent
• Less immunogenic
• Approx 10 x smaller than normal colonies
• Link with viable but non-culturable state?

Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com
Biofilms: When the Bugs Get Clingy
Dr. David Hammer, Canterbury Health Laboratories, Christchurch
A Webber Training Teleclass

Single or multiple species?
- Biofilms may consist of a single species or a complex community of organisms, the workings of which we are only beginning to fathom
- Different species may be competing or co-operating

Microscopic biofilms

Macroscopic biofilms

Obvious biofilms

Really HUGE biofilms

Quorum sensing and biofilms
- How do microbes know that there are other microbes around them?

Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com
Biofilms: When the Bugs Get Clingy
Dr. David Hammer, Canterbury Health Laboratories, Christchurch
A Webber Training Teleclass

Biofilm development
- Surface conditioning with organic and inorganic materials
- Colonising microbes become irreversibly adherent
- Extra-cellular matrix produced
- Biofilm develops often with subspecialisation of cells
- Mature biofilm with channels for nutrient/waste exchange

Aerobic/Anaerobic zones

Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com
Biofilms: When the Bugs Get Clingy
Dr. David Hammer, Canterbury Health Laboratories, Christchurch
A Webber Training Teleclass

Advantages to bacteria
• Increased environmental survival
• Resist being swept away
• Toxin production
• Resist phagocytosis
• Antibiotic resistance

Advantages to bacteria
• Increased environmental survival
 – Increased protection against heat, cold, UV

Advantages to bacteria
• Resist being swept away
 – Adherent colonies increase resistance to shear forces
 – Allow nutrients to flow to the colony and become trapped in the extra-cellular ‘net’
 – Parts of mature biofilm that do shear off form excellent seeds for further colonies (preformed infectious dose)

Advantages to bacteria
• Toxin production
 – Synchronised toxin production vastly increases amounts of toxin produced

Advantages to bacteria
• Resist phagocytosis
 – Difficult for predatory amoebae or WBCs to engulf biofilm bacteria
 – Synchronised toxin production also reduces phagocyte numbers

Advantages to bacteria
• Antibiotic resistance
• 10 – 1000 times more resistant to Abx.
 – Decreased penetration of antibiotic?
 – Altered metabolism?
 – Sharing of resistance plasmids through close contact

Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com
Biofilms: When the Bugs Get Clingy
Dr. David Hammer, Canterbury Health Laboratories, Christchurch
A Webber Training Teleclass

S. epidermidis & Plastic: An Enduring Love Affair

But S. *epidermidis* gets around …

Advantages to humans

- Not all biofilms are bad news
- Commensal bacteria in the mouth, gastrointestinal tract and vagina interfere with pathogen colonisation

Pathogenic biofilm examples

- Foreign bodies / Medical devices
 - Catheters
 - Lines
 - Prosthetic joints
 - Prosthetic heart valves
- Disease states
 - Otitis media
 - CF
 - Dental caries
 - H. pylori
- Environmental
 - *Legionella* in water supply pipes
 - Cholera in the Bay of Bengal

Diagnostic conundra

- Is the disease causing agent
 - the planktonic organism we detect or
 - is it hiding in a biofilm?

- Is the biofilm agent we detect
 - causing disease or
 - is it just colonising a site?

Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com
Biofilms: When the Bugs Get Clingy

Dr. David Hammer, Canterbury Health Laboratories, Christchurch

A Webber Training Teleclass

Management in disease states

- Antibiotic use may have an influence
 - Carbapenems may increase alginate production by Pseudomonas in CF
 - Macrolides may inhibit Pseudomonas quorum sensing in CF

Environmental Management

- Water treatment before it enters hospital pipeline
 - UV, Heat, Chlorination

- Can’t do much about cholera in Bengal
 - Just don’t drink the water!

Prevention in devices

What doesn’t work?

- Bladder irrigation
- Chronic systemic antibiotic prophylaxis

Prevention in devices 1

- Biofilms form within minutes to hours of foreign body insertion – mature biofilms develop within 18 – 24 hours!

- Development depends on:
 - Number of microbial cells already present
 - Flow rate
 - Available nutrients
 - Antimicrobials
 - Ambient temperature

Prevention in devices 2

- Does the patient really need a catheter/ IV line/ etc?
 - Approx 50% of urinary catheters are not necessary.

- Can’t do much about environmental factors but can reduce viable microbes by:
 - Good hand hygiene
 - Good skin prep
 - Appropriate prophylactic antibiotics

Prevention in devices 3

- Reduce opportunities for introduction of organisms
 - Optimising sites (tunnelled lines, suprapubic catheters, etc)
 - Proper disinfection before IV line use
 - Closed drainage of urine

Hosted by Jane Barnett jane@webbertraining.com

www.webbertraining.com
Biofilms: When the Bugs Get Clingy
Dr. David Hammer, Canterbury Health Laboratories, Christchurch
A Webber Training Teleclass

Treatment of infected devices
What works?
• Removal of the device
 – Is the only sure way to remove a biofilm

• Antibiotic therapy may or may not work
 – Depending on how well you can
 • get antibiotics to the site and
 • penetrate the biofilm and
 • eradicate the persisters

This is all just basic Infection Control …
• Surely science will save us?

Can we rely on technology?
• Antibiotic coated lines
• Silver coated lines
• New ‘non-stick’ materials
• Mixed evidence for above – may work for a limited time but at what cost:
 – Allergy?
 – Drug resistance?
 – Rough surfaces assist biofilm formation but no known material prevents it.

Experimental measures
• Electricity + Antibiotics
• Quorum sensing interference
 – Furanones from red seaweed (*Delisea pulchra*) interfere with QS but
 – toxicity issues limit use thus far
• Ethanol locks
• Iron scavenging materials reduce growth
• Bacterial interference

Treatment Summary
• Prevention is the best treatment
• Accept that biofilms will eventually form on most catheters
• Usually need to remove foreign body to remove biofilm
• New technologies will become available but will NOT replace basic infection control

Treatment 2
• Basic Infection Control *is* the science that will save us

Hosted by Jane Barnett jane@webbertraining.com
www.webbertraining.com
Biofilms: When the Bugs Get Clingy
Dr. David Hammer, Canterbury Health Laboratories, Christchurch
A Webber Training Teleclass

The relative test:

If this was happening to your relative, how would you like them treated?

References

• Donlan RM – Biofilms and Device-Associated Infections – CID Vol 7 No. 2, 2001
• Trautner BW et al – Role of biofilm in catheter-associated urinary tract infection – AJIC Vol. 32 No. 1, 2004
• Hoiby N – Biofilms in water, its role and impact in human disease transmission –Curr Opin Biotech 2008
• Duguid LJ – Candida biofilms and their role in infection – Trends in Microbiology 2008
• Skidder SJ et al – Observations on the development of the crystalline bacterial biofilm that encrusts and blocks Foley catheters – J Hosp Infect 2008
• Allegrucci M et al – Characterization of Colony Morphology Variants isolated from Streptococcus pneumoniae biofilms – J Bact 2007
• Brown D – Bacteria with Benefits – The Press July 31, 2006
• Mandell – Principles and Practices of Infectious Diseases
• Up to date online
• CDC website http://www.cdc.gov
• Edstrom biofilm information http://www.edstrom.com/index.cfm

The 2009 South Pacific Teleclass Series
Watch This Space

(announced in December)