

Division of Investigative Science Imperial College, London, UK

Lead, 1st Global Patient Safety Challenge, World Health Organization (WHO) Patient Safety

1st principle of infection prevention

at least 35-50% of all healthcare-associated infections are associated with only 5 patient care practices:

- · Use and care of urinary catheters
- · Use and care of vascular access lines
- Therapy and support of pulmonary functions
- Surveillance of surgical procedures
- · Hand hygiene and standard precautions

1st principle of infection prevention

at least 35-50% of all healthcare-associated infections are associated with only 5 patient care practices:

- · Use and care of urinary catheters
- Use and care of vascular access lines
- · Therapy and support of pulmonary functions
- Surveillance of surgical procedures
- · Hand hygiene and standard precautions

Healthcare-Associated Urinary Tract Infection

- Urinary tract infection (UTI) causes
 ~ 40% of hospital-acquired infections
- Most infections due to urinary catheters
- · 25% of inpatients are catheterized
- · Leads to increased morbidity and costs

Prevention of Catheter-Associated Urinary Tract Infection (CA-UTI)

Two main principles

Avoid unnecessary catheterization

Limit the duration of catheterization

Indications for the use of indwelling urethral catheters

- Indications
 - Perioperative use for selected surgical procedures
 - Urine output monitoring in critically ill patients
 - Management of acute urinary retention and urinary obstruction
 Assistance in pressure ulcer healing for incontinent residents
 - As an exception, at patient request to improve comfort
- Urinary incontinence is <u>not</u> an accepted indication for urinary catheterization
 - 21 to 50 percent of urinary catheters not indicated

Lo et al. (2008) Infect Control Hosp Epidemiol Suppl 1:S41-50

Is one catheter better than another?

- No significant difference between latex and silicone catheters
- · What about coated / impregnated catheters?
- · The concept: prevention of biofilm formation

Catheter insertion and maintenance

- Insert catheters by use of aseptic technique and sterile equipment (A-III)
- Cleanse the meatal area with antiseptic solutions is unnecessary (A-I)
 - routine hygiene is appropriate
- Properly secure indwelling catheters after insertion to prevent movement and urethral traction (A-III)
- Maintain a sterile, continuously closed drainage system
 (A-I)
- Do not disconnect the catheter and drainage tube unless the catheter must be irrigated (A-I)

Lo et al. (2008) Infect Control Hosp Epidemiol Suppl 1:S41-50

Catheter insertion and maintenance

- Maintain unobstructed urine flow (A-II)
- Empty the collecting bag regularly, using a separate collecting container for each patient, and avoid allowing the draining spigot to touch the collecting container (A-II)
- Keep the collecting bag below the level of the bladder at all times (A-III)
- Do not routinely use silver-coated or other antibacterial catheters (A-I)
- Do not screen for asymptomatic bacteruria in catheterized patients (A-II)
- Do not treat asymptomatic bacteruria in catheterized patients except before invasive urologic procedures (A-I)

Lo et al. (2008) Infect Control Hosp Epidemiol Suppl 1:S41-50

What you should not do to prevent CAUTI

- Do not use (avoid) catheter irrigation (A-I)
- Do not use systemic antimicrobials routinely as prophylaxis (A-II)
- · Do not change catheters routinely (A-III)

Lo et al. (2008) Infect Control Hosp Epidemiol Suppl 1:S41-50

Incidence of UTI, before and after a multimodal intervention

Stéphan F. et al D, Clin Infect Diseases 2006, 42:1544

UTI	Pre-intervention period (n=280)		Post-intervention period (n=259)		RR (95%-CI)
	Ν	ID*	Ν	ID*	
Overall	39	27.0	17	12.0	0.44 (0.24-0.81)
Orthopedic surgery	34	45.8	10	18.6	0.41 (0.20-0.79)
Digestive surgery Control group	6	9.0	3	5.6	0.62 (0.14-2.50)
* ID: episodes per 1000 catheter-days					

Stéphan F. et al D, **Reduction of UTI and antibiotic use after surgery:** a controlled, prospective, before-after intervention study *Clin Infect Diseases* 2006, 42:1544

- Incidence density of UTI decreased by 60% after orthopedic surgery following a multimodal intervention
- Results were maintained after 2 years
- Less indwelling urinary catheters placed in the operating room
- · Decrease UTI antibiotic-related consumption

1st principle of infection prevention

at least 35-50% of all healthcare-associated infections are associated with only 5 patient care practices:

- · Use and care of urinary catheters
- · Use and care of vascular access lines
- · Therapy and support of pulmonary functions
- Experience with surgical procedures
- · Hand hygiene and standard precautions

Reported incidence rates of catheter- associated bloodstream infections in surveillance networks in ICUs:				
NHSN:	2.7 per 1000 catheter-days (1.5/1'000 – 6.8/1'000) National Healthcare Safety Network			
Michigan:	2.7 per 1000 catheter-days (median before intervention)			
Germany:	2.1 per 1000 catheter-days			
18 developing countries:	International Nosocomial Infection Control Consortium (INICC) 2002-2007 8.9 per 1000 catheter-days			
Edwards RJ. Am J Infect Control 2007; 35:290 – Gastmeier P. J Hosp Infect 2006; 64: 16 Pronovost P. N Engl J Med 2006; 355:26 – Rosenthal V. Am J Inf Control, 2008:36:627-637				

Multimodal intervention strategies to reduce catheter-associated bloodstream infections:

- Hand hygiene
- Maximal sterile barrier precaution at insertion
- Skin antisepsis with alcohol-based chlorhexidinecontaining products
- Subclavian access as the preferred insertion site
- Daily review of line necessity
- Standardized catheter care using a non-touch technique
- Respecting the recommendations for dressing change

Eggimann P. *Lancet* 2000; 35: 290 Pronovost P. *N Engl J Med* 2006; 355: 26 Zingg W. *Crit Care Med* 2009; 37: 2167

Efficacy of multimodal intervention strategies: Baseline Intervention Eggimann 3.1/1000 catheter-days 1.2/1000 catheter-days Lancet 2000 Ann Intern Med 2005 Pronovost *7.7/1000 catheter-days *1.4/1000 catheter-days NEJM 2006 Zingg Crit Care Med 2009 3.1/1000 catheter-days 1.1/1000 catheter-days *mean pooled CRBSI-episodes per 1'000 catheter-days Eggimann P. *Lancet* 2000; 35: 290 Eggimann P. *Ann Intern Med* 2005; 142: 875 – 5 year follow-up Pronovost P. *N Engl J Med* 2006; 355: 26 Zingg W. *Crit Care Med* 2009; 37: 2167

Chlorhexidine-Impregnated Sponges and Less Frequent Dressing Changes for Prevention of Catheter-Related Infections in Critically III Adults

Multi-centre randomized controlled trial

- 3'778 catheters
- 28'931 catheter-days
- Baseline rate of major catheter-related infections: **1.4/1000** catheter-days!

Timsit JF. JAMA 2009; 301: 1231

Efficacy of multimodal intervention strategies				
	Baseline	Intervention		
Eggimann	3.1/1000 catheter-days	1.2/1000 catheter-days		
Pronovost	*7.7/1000 catheter-days	*1.4/1000 catheter-days		
Zingg	3.1/1000 catheter-days	1.1/1000 catheter-days		

1.4/1000 catheter-days 0.6/1000 catheter-days

*mean pooled CRBSI-episodes per 1'000 catheter-days

Timsit

Eggimann P. *Lancet* 2000; 35: 290 Pronovost P. *N Engl J Med* 2006; 355: 26 Zingg W. *Crit Care Med* 2009; 37: 2167 Timsit JF. *JAMA* 2009; 301: 1231

1st principle of infection prevention

at least 35-50% of all healthcare-associated infections are associated with only 5 patient care practices:

- · Use and care of urinary catheters
- Use and care of vascular access lines
- Therapy and support of pulmonary functions
- Experience with surgical procedures
- · Hand hygiene and standard precautions

Risk factors for Ventilator-Associated Pneumonia (VAP)

Patient

- Age
- Burns
- Coma
- Lung disease
 - Immunosuppression
- Malnutrition
- Blunt trauma

Devices · Invasive ventilation

- · Duration of invasive
- ventilation
- · Reintubation
- Medication
 - Prior antiobiotic treatment
 - · Sedation

General precautions

- Staff education, hand hygiene, isolation precautions (I)
- Surveillance of infection and . resistance with timely feedback (II)
- Adequate staffing levels (II)

Intubation and ventilation

- Avoid intubation and reintubation I
- Prefer non-invasive ventilation I
- Prefer orotracheal intubation & orogastric tubes - II
- Continous subglottic aspiration I
- Cuff pressure > 20 cm H2O II
- Avoid entering of contaminate consendate into tube/nebulizer - II
- Use sedation and weaning protocols to reduce duration – II
- Use daily interruption of sedation and avoid paralytic agents - II ATS Guidelines 2005

Systemic and enteral antibiotics

- Selective decontamination of the digestive tract (SDD) reduces the incidence of VAP & helps to contain MDR outbreaks – I
- But SDD not recommended for routine use II
- Prior systemic antibiotics helps to reduce VAP in selected patient groups but increases MDR – II
- 24-hour AB prophylaxis helps in one study but not for routine use - I

ATS Guidelines 2005

Stress bleeding, transfusion, hyperglycemia

- Trend towards less VAP with sucralfate (vs H2 blockers) but increased gastric bleeding
 > individual choice - I
- Prudent transfusion, leukocyte-depleted red blood cell transfusion - I
- Intensive insulin therapy to keep glucose 80

 110 mg/dl I

Aspiration, body position

- Semirecumbent position (30 45°) especially when receiving enteral feeding - I
- Enteral nutrition is preferred over parenteral because of translocation risk I

ATS Guidelines 2005

- 6. Gastric overdistention avoidance
- 7. Good oral hygiene
- 8. Elimination of non-essential tracheal suction

VAP Prevention 1. Hand hygiene before and after patient contact preferably using alcohol-based handrubbing 2. Avoid endotracheal intubation if possible 3. Use of oral, rather than nasal, endotracheal tubes 4. Minimize the duration of mechanical ventilation

- 5. Promote tracheostomy when ventilation is needed for a longer term
- 6. Glove and gown use for endotracheal tube manip

VAP Prevention (con't)

- 7. Avoid non-essential tracheal suction
- 8. Oral hygiene with chlorhexidine
- 9. Backrest elevation 30-45°
- 10. Maintain tracheal tube cuff pressures (>20) to prevent regurgitation from the stomach
- 11. Avoid gastric overdistension
- 12. Promote enteral feeding
- 13. Careful blood sugar control in patients with diabetes
- 14. SDD in selected cases

1st principle of infection prevention

at least 35-50% of all healthcare-associated infections are associated with only 5 patient care practices:

- Use and care of urinary catheters
- · Use and care of vascular access lines
- Therapy and support of pulmonary functions
- · Experience with surgical procedures
- Hand hygiene and standard precautions

Strategies to prevent SSI

- Objectives
 - Reduce the inoculum of bacteria at the surgical site
 - · Surgical Site Preparation · Antibiotic Prophylaxis Strategies
 - Optimize the microenvironment of the surgical site
 - Enhance the physiology of the host (host defenses)
- · In relation to risk factors, classified as
 - Patient-related (intrinsic)
 - Pre-operative
 - Operative

Patient-related factors

- · Diabetes Recommendation (IDSA/SHEA)
 - Preoperative
 - Control serum blood glucose; reduce HbA1C levels to ${\rm <7\%}$ before surgery if possible (A-II)
 - Post-operative (cardiac surgery patients only) · Maintain the postoperative blood glucose level at less than
- 200 mg/dL (A-I) Smoking
- Rationale
- Nicotine delays wound healing
- Cigarette smoking = independent RF for SSI after cardiac surgery
- Studies: None
- Recommendation
- Encourage smoking cessation within 30 days before procedure

Procedure-related risk factors

- Hair removal technique
- Preoperative infections
- Surgical scrub
- Skin preparation
- Antimicrobial prophylaxis
- Surgeon skill/technique
- Asepsis
- Operative time
- Operating room characteristics

Antimicrobial prophylaxis

- · Recommendations (A-I)
 - Administer within 1 hour of incision to maximize tissue concentration
 - · Once the incision is made, delivery to the wound is impaired

Antimicrobial prophylaxis

- Duration of prophylaxis (A-I)
 - Stop prophylaxis
 - within 24 hours after the procedure
 - within 48 hours after cardiac surgery
 - To:
 - · Decrease selection of antibiotic resistance
 - · Contain costs
 - · Limit adverse events

Bratzler et al Arch Surg 2005, 140:174-82 Harbarth S et al. Circulation 2000;101:2916-2921

Surgeon Skill and Technique

- Excellent surgical technique reduces the risk of SSI (A-III)
- Includes
 - Gentle traction and handling of tissues
 Effective hemostasis
 - Removal of devitalized tissues

 - Obliteration of dead spaces
 Irrigation of tissues with saline during long procedures
 - Use of fine, non-absorbed monofilament suture material Wound closure without tension
 - Adherence to principles of asepsis

Active surveillance

N patients	Période	Réduction ISO
21 920	5 ans	- 57%*
119 114	4 ans	- 25%*
150 440	6 ans	- 50%**
	patients 21 920 119 114	patients 21 920 5 ans 119 114 4 ans

Summary: Rela	ative	SSI reduction
- Active surveillance	38% 55%	Haley et al, Am J Epidemiol 1985 Rioux et al, J Hosp Infect 2007
- Multimodal intervention	27% 57%	100k lives campaign Trussel et al, Am J Surg 2008
- Correct and timely antibiotic prophylaxis	18%	Saxer et al, Ann Surg 2009
- Normothermia	13%	Kurz et al, NEJM 1996
- Normoglyceamia	38%	Ambiru et al, J Hosp Infect 2008
- Chlorhexdidine-alcohol?	41%	Darouiche et al, NEJM 2010
- Suppl. oxygen?	25%	Qadan et al, Arch Surg 2009
- Nasal mupirocin for MSSA?	58%	Bode et al, NEJM 2010
 Surgical hand 		
antisepsis no data no	random	Widmer et al, J Hosp Infect 2010

Examples of Multimodal approach(es) to reduce SSI

Timely antibiotic prophylaxis, strict glycaemia control, no shaving SSI 1.5% vs. 3.5% in controls

Trussel et al, Am J Surg 2008

<u>100k lives campaign</u> (antibiotic prophylaxis, glycaemia control, normothermia) SSI from 2.3% to 1.7% (-27%) 100k lives campaign

1st principle of infection prevention

at least 35-50% of all nosocomial infections are associated with patient care practices:

- Use and care of urinary catheters
- Use and care of vascular access lines
- Therapy and support of pulmonary functions
- Experience with surgical procedures
- · Hand hygiene and standard precautions

« Success story – Key Parameters »

- System change
- Education of healthcare workers
- Monitoring and feedback of performance
- Administrative support
- Leadership and culture change
- Associated with reduction in crosstransmission and infection rates

Evolving to new challenges in infection control and patient safety

- Team and multidisciplinary team work
- Successful interventions
- Adaptability of actions
- Scaling up
- Sustainability of actions / interventions
- Leadership commitment / Governance

Encourage health-care facilities to show their commitment by signing up now on:

http://www.who.int/gpsc/5may

Clean Care is Safer Care Global Patient Safety Challenge

