Clostridium difficile 027, A Southern Hemisphere Perspective
Dr. David Hammer, Medlab South, New Zealand
A Webber Training Teleclass

THE PRESS 6 July 2006

Errors cost 30% of health budget

Total Annual Cost of Nosocomial Infection
- USA US$ 7 000 000 000
- UK £ 1 000 000 000
- NZ NZD 136 000 000

C. difficile – more than just a little diarrhoea …
- 7 – 64% mortality rate
- US $1 000 000 000 / year
- EU €300 000 000 / year
- UK £2000 (extra cost per case)
 and 10 day increase in length of stay
- > 43 000 cases reported in UK 2004
 (2000 x 43000 = £86 000 000)

Declaration of personal interest
- Harry (an elderly family friend)
- Routine shoulder operation – UK NHS
- Acquired C. difficile
- Died in hospital
- Undignified and painful death
- Personal interest in preventing further such tragedies

Epidemiology
- Up to 50% neonates → < 3% 2 year olds
- Isolated in 3% of healthy adults who usually have high antibody levels to toxin A
- Mostly acquired from environment
 - Lower incidence single vs double rooms
 - Possible food sources in studies on meat
- Person to person spread well documented
 - 60% HCW’s hands (in those caring for carriers)
- Occasionally endogenous
- Sexual transmission described

Hosted by Jane Barnett
jane@webbertraining.com
www.webbertraining.com
Clostridium difficile 027, A Southern Hemisphere Perspective

Dr. David Hammer, Medlab South, New Zealand

A Webber Training Teleclass

Not just patients

- Documented infections in
 - HCWs
 - Lab workers

Why don’t people get C difficile?

- Protective factors
 - IgG
 - Non-toxigenic carriage protective
 - Bowel flora (10^{12} bacteria/g stool)
 - Bacterial interference
 - Bowel flora changes with age
 - Bowel flora can be affected by antibiotics, chemo or surgery
- Neonates
 - high colonisation but low disease
 - probable lack of toxin receptors

The Bug

- Gram positive anaerobic bacillus
- Spores

Pathogenicity of C. difficile

- Spores
 - Tough outer layers enable prolonged and tenacious environmental survival
- Toxins
 - A number of poisons produced by the bacterium wreak havoc on human tissue

The Bacterial Spore

Implications of spores

- Potentially survive for decades in the environment
- Difficult to eradicate without extreme measures (eg. bleach or autoclave)

Hosted by Jane Barnett
jane@webbertraining.com
www.webbertraining.com
Toxins

- *C. difficile* disease is toxin based
- Toxin A (enterotoxin)
 - Also causes inflammatory response
- Toxin B (cytotoxin) 10 x more toxic than A!
- Both damage cytoskeleton
- Binary toxin attacks actin filaments in cell causing cell death

Toxins Genes

![Toxins Genes Diagram](image)

Colonic disease

![Colonic disease Image](image)

1. Cytolysis and separation of epithelium

Clinical manifestations

- Usually within 5 – 10 days of antibiotics
- 2/3 Asymptomatic
- Profuse watery diarrhoea (± blood)
- 50% have fever & ↑ WBC
- 1/3 abdominal pains
- Rarely
 - bacteraemia
 - osteomyelitis
 - splenic abscess
- Reactive arthritis described

Complications

- Perforation/ Acute abdomen
 - mimics appendicitis
- Toxic megacolon
 - mimics Inflammatory Bowel Disease
 - 64% mortality
- Beware the 'known colitic' patient!

Diagnosis of *C. difficile*

Hosted by Jane Barnett
jane@webbertraining.com
www.webbertraining.com
Diagnosis - Culture

- The ‘difficult’ bacterium
- Non-haemolytic, yellow-white ground-glass colonies with rhizoid margins
- p-cresol (horse manure) odour
- Fluoresces chartreuse under UV
- CCFA media – selective but
 - not sensitive for spores (unless bile salts added)
 - non-specific (25% non-toxigenic strains)

Diagnosis – other modalities

- Neutralisation assay
 - Culture and neutralisation of toxins
 - Gold standard but slow & expensive
- ELISA
 - sensitivity 64 – 94%; specificity 75 – 100%
 - Issues with detection of A- B+ strains in older systems
- PCR only recently available for direct diagnosis
- Endoscopy reserved for special situations

The ‘new’ outbreak strain

- Restriction endonuclease analysis BI/ PFGE NAP1, toxintype III, Ribotype 027
- Originally described in 1994
- Historically rare (5%)
 - Past, sensitive to F/Qs (gati- & moxifloxacin)
 - Current epidemic isolates all resistant to F/Qs

027 pathogenesis

- Toxins: A + B + binary toxin + deletion tcdC
- Toxin levels ± 20 x higher than standard strains
 - More virulent
- Increased sporulation
 - Better spread

Toxin & spore production

Hosted by Jane Barnett
jane@webbertraining.com
www.webbertraining.com
US
- New strain identified in US since 2001
- CDC data showed a rise of 26% in discharge diagnosis of *C. difficile* between 2000 and 2001

Canada
- Identified in 2002 – 2003
- Epidemic detected because of increased colectomies!
 - Quebec: 1995 3.6/10 000 pt days
 - 2005 >15/10 000 pt days
- Death in 22/132 cases of epidemic strain vs 0/25 infected with other strains

UK
- Incidence of CDAD doubled between 2001 and 2004
- National incidence of 678/100 000 in people over 75
- 43 672 cases of *C. difficile* in 2004
 - notification now mandatory

027 in the EU and beyond
- 2005
 - Netherlands
- 2006
 - Austria, Denmark, France, Switzerland, Scotland
- 2007
 - Belgium, Germany, Ireland, Norway, Spain, Japan
- 2008
 - Sweden

New Zealand/ Oceania
- Current situation
 - Anecdotally *C. difficile* is not a major problem
- But
 - NOT a notifiable disease
 - No co-ordinated screening program
 - No 027 specific surveillance
- It’s just a matter of time before it arrives!
- Are we ready for it?
 - Probably not

Treatment
- Stop offending antibiotic cures ± 20%
- Supportive therapy
 - Fluids and electrolytes
- Avoid antiperistaltic agents
 - These may make disease worse
- Do not treat asymptomatic carriers

Hosted by Jane Barnett
jane@webbertraining.com
www.webbertraining.com
Antibiotic Therapy – Metronidazole

• Oral metronidazole
 – Cheap
 – Recommended for first line use in mild disease
• IV metronidazole
 – some efficacy in NBM patients

Antibiotic Therapy – Vancomycin

• Oral vancomycin
 – Very expensive
 – Recommended for first line use in severe disease
 • WBC > 20,000/ml
 • Creatinine > 200 micromol/L
 • Age > 70
 – use 2nd line in mild disease

Antibiotic Therapy

• Both metronidazole & vancomycin have
 – ≥ 90% cure
 – ≥ 15% relapse
 – Some in vitro resistance described
 – Possible risk of increased VRE

Other treatments

• Limited data available for
 – Teicoplanin
 – Rifamycins
 – Fusidic acid
 – Bacitracin
 – Nitazoxanide
• Anion-exchange resins
• Intravenous Immunoglobulins
 – Very expensive
 – Successful case reports
• Stool infusions reported successful
 – the domain of the desperate!

Recurrence

• Well-described
• May be multiple
• Up to 50% are different strain
 – Resistance is NOT usually a feature
• Re-treat with initial antibiotic used
 – May try tapering/ pulsed doses to eradicate germinating spores
• Role of probiotics is uncertain
 – Saccharomyces boulardii & Clostridium coccoides show some potential
 – No convincing evidence yet
 – Risk of nosocomial disease in immune compromised

Prevention & Control

Incorporating standard precautions

Hosted by Jane Barnett
jane@webbertraining.com
www.webbertraining.com
Case management

- Contact/ Enteric isolation of cases
 - Own toilet
- Gloves
- Gowns
 - Especially dealing with soiled material

Hand hygiene

- Good handwashing technique essential
 - Washing is the preferred method of hand hygiene in the setting of *C. difficile*
- NB – Alcohol does not kill spores!
- However, no studies have shown increased infections in units with use of alcohol hand rub

Environmental factors

- Good bed: toilet ratios
- Environmental disinfection is vital
 - Hypochlorites, peracetic acid, peroxide
 - CDC recommends hypochlorites
 - Adequate cleaning job necessary
- Non-isolation areas also important
- Potential for increased sporulation with
 - Non-sporicidal agents
 - Diluted concentrations of sporicides
 - Disinfectant vaporisers being tested
 - Cleaning of bed pans a problem

Caveat emptor

- Beware of claims of increased efficacy of alcohol or chlorhexidine hand disinfectants against *C. difficile* as these are based on vegetative form, not spores
- Same caution should be applied to some claims concerning environmental disinfectants!

Identifying at risk patients

- Age, comorbidities, antibiotics, PPIs
- Waterlow score >20 could be used to identify high risk patients
 - Sensitivity 70%
 - Specificity 95%

Patient hygiene

- Growing evidence of carriage of *C. difficile* on skin of asymptomatic and symptomatic patients (even after symptom resolution)
- Raises the question of the role of patient cleaning

Hosted by Jane Barnett
jane@webbertraining.com
www.webbertraining.com
Rationalise antibiotic use
- Well documented association with CDAD &
 - Clindamycin
 - Cephalosporins
 - Fluoroquinolones
- Generally believed that 50% of antibiotics are unnecessary
- Some studies show reduced *C. difficile* infection rates with better antibiotic stewardship

CID 2007 Sept; Suppl 2:S112-21

SHEA/ IDSA guidelines
- www.shea-online.org/evidence-based-guidelines.cfm
- Contact precautions
- Proper environmental cleaning
- Hand hygiene
- Lab based notification system
- Surveillance of CDI rates
- Education of clinicians, management, patients & visitors
- Antimicrobial stewardship

Experimental work
- Vaccine under development

In Conclusion
- The Infection Control message remains the same:

 “Wash your hands, you sinners…”

 - James 4:8

- Perhaps there are too many saints in healthcare?

Hosted by Jane Barnett
jane@webbertraining.com
www.webbertraining.com