Methods for the Evaluation of Hand Disinfectants

Manfred L. Rotter
Institute of Hygiene and Medical Microbiology
Medical University of Vienna

Evaluation of Hand Disinfectants (1)
Parameter: Reduction of bioburden

- In vitro
 - MIC of disinfectant vs. selected strains
 - MBC of disinfectant vs. selected strains
 - Quantitative suspension tests for (bacteri-, fungi-, viru-)cidal properties
 - Kill-time studies suspension tests

Evaluation of Hand Disinfectants (2)

- In vivo
 - Controlled laboratory tests simulating practical conditions on hands of volunteers
 - Field trials

Evaluation of Hand Disinfectants (3)
Parameter: Reduction of infections

- Clinical trial
 - Comparative trial with the aim
 ⇒ Novum > Reference
 - Equivalence study

SAMPLE SIZE NECESSARY FOR SIGNIFICANT DIFFERENCE OF PROPORTIONS
(Example for comparative trial)

<table>
<thead>
<tr>
<th>Present Ratio of Hand-Transmitted Nosocomial Infections be</th>
<th>Desired Reduction of Infection Ratio be</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Ratio of Hand-Transmitted Nosocomial Infections intended be</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of significance (one-sided)</th>
<th>Power of statistical test</th>
</tr>
</thead>
<tbody>
<tr>
<td>α = 5 %</td>
<td>1 - β = 90%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Size (Number patients per experimental arm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
</tr>
</tbody>
</table>

Laboratory Test Methods

Hygienic Hand Disinfection:
(Hygienic Hand *Wash* and Hygienic Hand *Rub*)

- In vitro
- In vivo
Meathods for the Evaluation of Hand Disinfectants
Dr. Manfred Rotter, University of Vienna, Austria
Sponsored by Deb Hand Hygiene www.deb.co.uk

Bactericidal Properties of Hand Disinfectants
Proposed Suspension test prEN 12054

In vitro
Test organisms
- Staphylococcus aureus
- Pseudomonas aeruginosa
- Escherichia coli K 12
- Enterococcus hirae
Temperature 20°C
Contact time
- hygienic 1 min (optional 0.5 min)
- surgical 5 min (optional 1.2,3,4 min)
Requirement
- reduction: rub 5.0 lg,
 wash 3.0 lg

Hygienic Handwash with antiseptic soap – EN 1499. Simulating practical Conditions

In vivo
Volunteers 12-15
Test organism Escherichia coli K 12
Recovery Fingertip rub before and after treatment
Application
- product 30 or 60 s, according to manufacturer
- reference 60 s handwash with unmedicated soap
Requirement Product significantly (p = 0.01 unidirectional)
 more efficacious than soap
Discrimination Means ≥ 0.5 lg different (Power: 0.90)

Hygienic Handrub – EN 1500
Simulating practical Conditions

In vivo
Volunteers 12-15
Test organism Escherichia coli K 12
Recovery Fingertip rub before and after treatment
Application
- product 30 or 60 s, according to manufacturer
- reference 2 x 30s (=60 s) handrub with 2x3 ml
 60% (vol) 2-propanol
Requirement Product not significantly (p = 0.1, unidir.)
 less efficacious than 2-propanol 60%, 1min
Discrimination Means ≥ 0.6 lg different (Power: 0.95)

Hygienic Hand Disinfection – ANOVA: non-standardized
Results (lg RFPi): 5 agents, 5 repetitions, 2 laboratories,
with 15 volunteers in each

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>DF</th>
<th>Mean Squares</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agents (5)</td>
<td>4</td>
<td>102,4</td>
<td>327,5</td>
<td><0,0001</td>
</tr>
<tr>
<td>Volunteers (15)</td>
<td>14</td>
<td>2,6</td>
<td>8,1</td>
<td><0,0001</td>
</tr>
<tr>
<td>Laboratories (2)</td>
<td>1</td>
<td>5,8</td>
<td>18,6</td>
<td><0,0001</td>
</tr>
<tr>
<td>PxV</td>
<td>42</td>
<td>0,7</td>
<td>2,2</td>
<td><0,0001</td>
</tr>
<tr>
<td>VxL</td>
<td>3</td>
<td>3,4</td>
<td>10,8</td>
<td><0,0001</td>
</tr>
<tr>
<td>PxL</td>
<td>14</td>
<td>3,1</td>
<td>10,0</td>
<td><0,0001</td>
</tr>
<tr>
<td>PxVxL</td>
<td>42</td>
<td>0,7</td>
<td>2,4</td>
<td><0,0001</td>
</tr>
<tr>
<td>Error</td>
<td>470</td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Meathods for the Evaluation of Hand Disinfectants
Dr. Manfred Rotter, University of Vienna, Austria
Sponsored by Deb Hand Hygiene www.deb.co.uk

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com

Hygienic Hand Disinfection – ANOVA:
standardized results (lg RFPi-lg RFRi):
4 [products–reference], 5 repetitions , 2 laboratories,
with 15 volunteers in each

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>DF</th>
<th>Mean SQ</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products-Reference</td>
<td>3</td>
<td>90,2</td>
<td>117,5</td>
<td><0,00001</td>
</tr>
<tr>
<td>Volunteers (15)</td>
<td>14</td>
<td>2,7</td>
<td>3,5</td>
<td><0,00001</td>
</tr>
<tr>
<td>Laboratories (2)</td>
<td>1</td>
<td>3,5</td>
<td>4,6</td>
<td>n.s.</td>
</tr>
<tr>
<td>PxV</td>
<td>42</td>
<td>0,9</td>
<td>1,1</td>
<td>n.s.</td>
</tr>
<tr>
<td>VxL</td>
<td>3</td>
<td>1,6</td>
<td>2,1</td>
<td>n.s.</td>
</tr>
<tr>
<td>PxL</td>
<td>14</td>
<td>1,7</td>
<td>2,1</td>
<td><0,01</td>
</tr>
<tr>
<td>PxVxL</td>
<td>42</td>
<td>0,9</td>
<td>1,2</td>
<td>n.s.</td>
</tr>
<tr>
<td>Error</td>
<td>466</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Health-Care Antiseptic Drug Products-FDA (1)
In vitro
- Antibacterial spectrum of
 - active ingredient
 - carrier
- MICs with 20 microbial species, 50 strains of each
 (50% fresh clinical strains)
 - 9 gramnegative spp.
 -10 grampositive spp.
- Candida (incl. C. albicans)
 (= approx. 1000 strains)
- Development of resistance study
- Time-kill study (suspension test) with selected strains for
 0, 3, 6, 9, 12, 15, 20, 30 min

Health-Care Antiseptic Drug Products - FDA (2)
Antiseptic handwash and Health-Care Personnel handwash
(originally ASTM E 1174)

In vivo
- Volunteers (N):
 approx. total of 108
- Test preparation:
 approx. 54
- Positive control:
 approx. 54
- Contaminant bacterium: Serratia marcescens , (E. coli)
- Contamination and application: 10 times on an experimental day
 (Test and control in parallel)
- Samplings:
 - after 1st contamination (baseline)
 - after 1st, 3rd, 7th, 10th wash (rub)
- Required reduction within 5min:
 - after 1st handwash: 2 lg
 - after 10th handwash: 3 lg

Standard Test Method for Determining the Bacteria Eliminating Effectiveness of Hygienic Handwash and Handrub. ASTM E 2276
In vivo
(Similar to “Virus-eliminating“ Test acc. to ASTM E-1838)

Finger Pads including thumbs of at least 2 volunteers
Test bacteria: S. marcescens, E. coli, S. aureus, S.epiderm.
Requirement: not defined, but in comparison to a
negative and positive control

Virucidal Hand Disinfection Tests
Suspension Tests

<table>
<thead>
<tr>
<th>Suspension Tests</th>
<th>In vivo Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>prEN 14476</td>
<td>Finger pad, Whole hand</td>
</tr>
<tr>
<td>DVV</td>
<td>ASTM E-1838 (acc. to Sattar)</td>
</tr>
<tr>
<td>Adeno (human 4)</td>
<td>Polio 1</td>
</tr>
<tr>
<td>Rota (human) Wa</td>
<td>Adeno</td>
</tr>
<tr>
<td>Rhino (human) 37</td>
<td>Adeno</td>
</tr>
<tr>
<td>Hepatitis A HM-175</td>
<td>Polio 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virucidal Hand Disinfection Test ASTM E-1838</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation for the test</td>
</tr>
<tr>
<td>Marking of test areas</td>
</tr>
<tr>
<td>Test area with wet Virus suspension</td>
</tr>
<tr>
<td>Test area with dried Virus suspension</td>
</tr>
<tr>
<td>20-30 minutes</td>
</tr>
</tbody>
</table>

50
Methods for the Evaluation of Hand Disinfectants
Dr. Manfred Rotter, University of Vienna, Austria
Sponsored by Deb Hand Hygiene www.deb.co.uk

Laboratory Test Methods

Surgical Hand Disinfection:
(Surgical Hand Wash and Surgical Hand Rub)

In vitro
In vivo

Laboratory Test Methods

Surgical Hand Disinfection:

In vitro

Same Test Method as for
Hygienic Hand Disinfection

Laboratory Test Methods

Surgical Hand Disinfection:

In vivo

Surgical Handrub/wash – prEN 12791
Simulating practical conditions

In vivo
Volunteers (N): 18-20
Test organism: Resident skin flora
Recovery: Fingertip rub before and after treatment
Application of
- Product: acc. to manufacturer, max. 5 min handrub/wash
- Reference: 3 min handrub with 60%/vol 1-propanol (mx3 ml)
Immediate effect sample: immediately after end of treatment (one hand)
3-hours effect sample: 3 hrs after end of treatment (other [gloved] hand)
Requirement: Product not significantly (imm: p=0.1; 3-hrs: 2p =0.01)
less efficacious than reference
Discrimination: imm. Effect: Means > 0.5 lg different (Power: 0.95)
Sustained effect: Optional claim: At 3 hrs, product significantly (p=0.01, unidirectional) more efficacious than reference
Meathods for the Evaluation of Hand Disinfectants
Dr. Manfred Rotter, University of Vienna, Austria
Sponsored by Deb Hand Hygiene www.deb.co.uk

Surgical Hand Disinfection according to EN 12791
4 disinfectants, 5 laboratories, both hands

<table>
<thead>
<tr>
<th>Hands</th>
<th>Agents</th>
<th>Conc.</th>
<th>Mean (lgRFi)</th>
<th>Median (lgRFi)</th>
<th>deviation (lgRFi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>n-propanol</td>
<td>60%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>r</td>
<td>n-propanol</td>
<td>60%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>l</td>
<td>ethanol</td>
<td>85%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>r</td>
<td>ethanol</td>
<td>85%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>l</td>
<td>iso-propanol</td>
<td>70%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>r</td>
<td>iso-propanol</td>
<td>70%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>l</td>
<td>CHG</td>
<td>4%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>r</td>
<td>CHG</td>
<td>4%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Surgical Hand Disinfection - ANOVA: non-standardized results (lgRFi):
4 agents, 2 hands, 5 laboratories, 20 volunteers in each

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>DF</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Agents (4)</td>
<td>3</td>
<td>53.97</td>
<td>< 0.001 *</td>
</tr>
<tr>
<td>2 Laboratories (5)</td>
<td>4</td>
<td>5.22</td>
<td>< 0.001 *</td>
</tr>
<tr>
<td>3 Hands (2)</td>
<td>1</td>
<td>4.93</td>
<td>0.029</td>
</tr>
<tr>
<td>1 x 2</td>
<td>12</td>
<td>1.67</td>
<td>0.073</td>
</tr>
<tr>
<td>1 x 3</td>
<td>4</td>
<td>1.37</td>
<td>0.249</td>
</tr>
<tr>
<td>2 x 3</td>
<td>3</td>
<td>0.66</td>
<td>0.579</td>
</tr>
<tr>
<td>1 x 2 x 3</td>
<td>12</td>
<td>1.55</td>
<td>0.107</td>
</tr>
</tbody>
</table>

Surgical Hand Disinfection - ANOVA: standardized results (lgRFPi - lgRFri):
3 [products –reference], 5 laboratories, 2 hands, 20 volunteers in each

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>DF</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [Products-Reference] (3)</td>
<td>2</td>
<td>42.16</td>
<td>< 0.001 *</td>
</tr>
<tr>
<td>2 Laboratories (5)</td>
<td>4</td>
<td>1.67</td>
<td>0.162</td>
</tr>
<tr>
<td>3 Hands (2)</td>
<td>1</td>
<td>0.70</td>
<td>0.404</td>
</tr>
<tr>
<td>1 x 2</td>
<td>8</td>
<td>1.66</td>
<td>0.109</td>
</tr>
<tr>
<td>1 x 3</td>
<td>4</td>
<td>3.41</td>
<td>0.012</td>
</tr>
<tr>
<td>2 x 3</td>
<td>2</td>
<td>0.63</td>
<td>0.533</td>
</tr>
<tr>
<td>1 x 2 x 3</td>
<td>8</td>
<td>0.40</td>
<td>0.918</td>
</tr>
</tbody>
</table>

EFFICACY OF SURGICAL HAND DISINFECTION (5 min)

Surgical Hand Disinfection: FDA (orig. ASTM E II5)
Volunteers (N): approx: 100 (150)
per arm:
- Test: approx. 50
- Positive control: approx. 50
- (Placebo) (50)

Testbacteria: normal resident handflora
Application of Product:
acc. to manufacturer’s instruction or without any: apply product 2 x 5 min, then rinse hands for 1 min
„Baseline“:
- rinse hands for 30 s, wash hands for 30s,
- rinse hands for 3s
Positive control: FDA-approved antiseptic; all parameters as product; concurrent testing
Methods for the Evaluation of Hand Disinfectants
Dr. Manfred Rotter, University of Vienna, Austria
Sponsored by Deb Hand Hygiene www.deb.co.uk

Surgical Hand Disinfection: FDA in-vivo model
Schedule for disinfecting and sampling and required lg bacterial reduction

<table>
<thead>
<tr>
<th>Sampling Times (hrs)</th>
<th>Day of test period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1/60</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td><bl</td>
</tr>
</tbody>
</table>

X: Desinfection: Day 1 (1/60), day 2, 3, 4 (1/60, 3, 6), day 5 (1/60)
O: Sampling: Day 1, 2 and 5: after 1/60, 3 and 6 hrs with gloves
bl: Baseline

Further Information is available!

Other 2005 Teleclasses
For more information, refer to www.webbertraining.com/schedule.cfm

- April 21 - Creutzfeldt-Jakob Disease: Recommendations for Disinfection and Sterilization with Dr. William Rutala
- April 28 - Overcoming the Resistance of Biofilms with Dr. Peter Gilbert
 Sponsored by Virox Technologies Inc. www.virox.com
- May 19 - Antiseptic Practice & Procedure with Susan Crow
 Sponsored by 3M Canada www.3m.ca
- May 26 - Canadian Response to West Nile Virus with Dr. Paul Sockett
- June 7 - Measuring the Cost of Hospital Infection with Dr. Barry Cookson

Questions? Contact Paul Webber paul@webbertraining.com

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com