Epidemiology and prevention of urinary tract infection

WHO Webinar, October 19th, 2010

Andreas Voss, MD, PhD
Radboud University Nijmegen Medical Centre & Canisius-Wilhelmina Hospital
Nijmegen, The Netherlands

This presentation will focus on ...

- Patients with indwelling catheterization
 - short-term (<30 days) and long-term (≥30 days)
 - intermittent catheterization and condom catheterization
- If not differently mentioned the content of the presentation is based on:
 - Lo et al. SHEA/IDSA Practice Recommendations
 - Infection Control Hospital Epidemiology 2008;29:S41-S50
 - B. Trautner, Management of CA-UTI
 - Current Opinion in Infectious Diseases 2010, 23:76 – 82
 - IDSA guideline
 - Clinical Infectious Diseases 2010;50:625–663

Urinary Tract

- Kidneys
 - Remove excess liquid and wastes from the blood
 - Keep stable balance of salts and other substances in the blood
 - Hormone producer
- Ureter
 - Carry urine from the pyelum of the kidney to the bladder
- Bladder
 - Storage of urine
- Urethra
 - Distal part of the UT
 - Differences in length between males and females
- Prostate (men)
 - Is embedded around the urethra

Urinary Tract Infections (1)

- Microbial invasion of any of the tissues of the UT
 - From the renal cortex to the urethral meatus
 - Descending infection
 - From the urethral meatus to the renal cortex
 - Ascending infection
- Even the blood can be reached by the bacteria leading to bacteraemia or sepsis

Urine

- Urine is normally sterile
- Contains in the fluid salts and waste products
 - NOT albumin, erythrocytes, leukocytes, glucose e.o.
 - NOT: crystalline structures
- pH from 4-6
- Osmolarity: 200 - 900 mmol/L
- Unrestricted flow, no reflux, no bladder residues
Urinary Tract Infections (2)

- Predominantly restricted at a single site
 - Kidney: Pyelonephritis
 - Including proximal ureters
 - Bladder: Cystitis
 - Urethra: Urethritis
 - Prostate: Prostatitis
 - Urine: Bladder bacteriuria

- Recurrent infections

Urinary Tract Infections

- Asymptomatic UTI
 - Bacteriuria

- Symptomatic UTI
 - UTI in which no underlying structural or neurological lesions are present
 - Generally respond well to antimicrobial treatment
 - Lower UTI: acute uncomplicated UTI (cystitis)
 - Upper UTI: acute non-obstructive pyelonephritis

Recurrent infections

- Urinary Tract Infections
 - Symptomatic UTI
 - UTI in which no underlying structural or neurological lesions are present
 - Generally respond well to antimicrobial treatment
 - Lower UTI: acute uncomplicated UTI (cystitis)
 - Upper UTI: acute non-obstructive pyelonephritis

- Complicated UTI
 - Interfere with drainage of urine in some part of the UT due to:
 - Recurrent infections, leaving residual inflammatory changes
 - Obstruction, stones or neurological lesions or abnormal UT.
 - Different species over time.
 - Risk of emergence of resistance due to frequent treatment.
 - Can be asymptomatic or symptomatic
 - Can be lower- or upper-UT

Catheter-associated UTI (CA-UTI)

- Most common hospital-acquired infection
 - >40% of all HAIs
 - 80% attributable to an indwelling urethral catheter
 - 15%-25% or patients in general hospitals have a urethral catheter inserted at some time during their stay
 - Daily risk of infection while catheter in-situ: 3%-7%
 - While in itself low morbidity it has still a substantial burden due to its high frequency:
 - Hospital stays extended by 2 days (attributable)
 - 2nd most common cause of nosocomial BSI
 - Large reservoir of multi-resistant m.o.’s (as a result of high AB-use)

Predisposing factor = urinary catheterization

- CA-UTI
 - Most common hospital-acquired infection
 - >40% of all HAIs
 - 80% attributable to an indwelling urethral catheter
 - 15%-25% or patients in general hospitals have a urethral catheter inserted at some time during their stay
 - Daily risk of infection while catheter in-situ: 3%-7%
 - While in itself low morbidity it has still a substantial burden due to its high frequency:
 - Hospital stays extended by 2 days (attributable)
 - 2nd most common cause of nosocomial BSI
 - Large reservoir of multi-resistant m.o.’s (as a result of high AB-use)

Predisposing factor = urinary catheterization

- CA-UTI
 - Most common hospital-acquired infection
 - >40% of all HAIs
 - 80% attributable to an indwelling urethral catheter
 - 15%-25% or patients in general hospitals have a urethral catheter inserted at some time during their stay
 - Daily risk of infection while catheter in-situ: 3%-7%
 - While in itself low morbidity it has still a substantial burden due to its high frequency:
 - Hospital stays extended by 2 days (attributable)
 - 2nd most common cause of nosocomial BSI
 - Large reservoir of multi-resistant m.o.’s (as a result of high AB-use)
CA-UTI

- Most common hospital-acquired infection
- >40% of all HAIs
- 90% attributable to an indwelling urethral catheter
- 15%-25% of patients in general hospitals have a urethral catheter inserted at some time during their stay
- Daily risk of infection while catheter in-situ: 3%-7%
- While in itself low morbidity it has still a substantial burden due to its high frequency:
 - Hospital stays extended by 2 days (attributable)
 - 2nd most common cause of nosocomial BSI
 - Large reservoir of multi-resistant m.o.'s (as a result of high AB-use)

Routes of entry of uro-pathogens to catheterized urinary tract

- Extraluminal
 - Early, at insertion
 - Later, by capillary action
 - Approximately two-thirds of the uropathogens that cause CA-bacteriuria are extraluminally acquired by ascension along the catheter-urethral mucosa interface
 - Extraluminal of greater importance especially in women (proximity anus, short urethra)
 → periurethral colonization = risk factor

- Intraluminal pathway is associated with the frequency with which closed drainage systems are breached...
 - ... or the contamination of the urine collection bag

- Mass transportation of microbe-laden urine into the bladder by retrograde reflux

Scanning electron micrograph of an infected catheter showing biofilm on the extraluminal surface.
CA-UTI pathogenesis

- Bacteriuria in patients with short-term catheters is usually caused by a single organism.
- *Escherichia coli* is the most frequent species isolated, although it comprises fewer than one-third of isolates.
 - Other Klebsiella species, Serratia species, Citrobacter species, and Enterobacter species, *P. aeruginosa*, and gram-positive cocci, including CNS and Enterococcus species.
- Funguria, mostly candiduria, is reported in 3%–32% of patients catheterized for short periods of time.
- UTIs in patients with long-term catheterization are usually polymicrobial.
 - Additional pathogens *P. mirabilis*, *Morganella morganii*, and *P. stuartii* are common.

Diagnosing CA-UTI

- Defined by the presence of symptoms or signs compatible with UTI with no other identified source of infection, along with
- 10^3 colony-forming units (cfu)/mL of 1 bacterial species in a single catheter urine specimen (sample via needle from sampling port)

Microbiology

- Bacteriuria in patients with indwelling urethral, indwelling suprapubic, or intermittent catheterization
- Defined by the presence of symptoms or signs compatible with UTI with no other identified source of infection, along with
- 10^3 colony-forming units (cfu)/mL of 1 bacterial species in a single catheter urine specimen (sample via needle from sampling port)

Microbial pathogens causing nosocomial CA-UTIs in U.S. acute-care hospitals, 1990-92

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Hospitalwide (% of total)</th>
<th>Intensive care units (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Enterococci</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Kleb/Enterob</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

CA-UTI risk factors

- Duration of catheterization
- Female sex
- Older age
- Not maintaining a closed drainage system

Risk factors for CA-UTI (1)

<table>
<thead>
<tr>
<th>Factor</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheterization >6d</td>
<td>5.1 – 6.8</td>
</tr>
<tr>
<td>Female</td>
<td>2.5 – 3.7</td>
</tr>
<tr>
<td>Urology service</td>
<td>2.0 – 4.0</td>
</tr>
<tr>
<td>Other site of infection</td>
<td>2.3 – 2.4</td>
</tr>
<tr>
<td>Diabetes</td>
<td>2.2 – 2.3</td>
</tr>
</tbody>
</table>

* based on prospective studies and use of multivariable statistical modeling
Risk factors for CA-UTI (1)

<table>
<thead>
<tr>
<th>Factor</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malnutrition</td>
<td>2.4</td>
</tr>
<tr>
<td>Azotemia (creat > 2.0 mg/dl)</td>
<td>2.1 – 2.6</td>
</tr>
<tr>
<td>Ureteral stent</td>
<td>2.5</td>
</tr>
<tr>
<td>Urine output monitoring</td>
<td>2.0</td>
</tr>
<tr>
<td>Drainage tube position</td>
<td>1.9</td>
</tr>
<tr>
<td>Antimicrobial Rx</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* based on prospective studies and use of multivariable statistical modeling

Basic practices for prevention and monitoring of CA-UTI

Recommended for all acute care hospitals

Basic practices for prevention and monitoring of CA-UTI

A. Appropriate infrastructure for preventing CA-UTI
B. Surveillance of CA-UTI
C. Education and training
D. Appropriate technique for catheter insertion
E. Appropriate management of indwelling catheters
F. Accountability

A. Appropriate infrastructure for preventing CA-UTI

- Provide and implement written guidelines for catheter use, insertion, and maintenance
- Ensure that only trained, dedicated personnel insert urinary catheters
- Ensure that supplies necessary for aseptic-technique catheter insertion are available
- Document indications for catheter insertion, date and time of catheter insertion, individual who inserted catheter, and date and time of catheter removal
- Resources to support surveillance of catheter use and outcomes

For exact details look at SHEA/IDSA Practice Recommendations.
Infection Control Hospital Epidemiology, 2008;29:S41-50
Surveillance of CA-UTI

- Use standardized criteria to identify patients who have a CA-UTI (numerator data)
- Collect information on catheter-days (denominator data) for all patients in the patient groups or units being monitored

Education and training

- Educate HCWS involved in insertion, care, and maintenance of urinary catheters
 - including alternatives to indwelling catheters
 - procedures for catheter insertion, management, and removal

Appropriate technique for catheter insertion

- Practice hand hygiene
 - immediately before insertion of the catheter
 - before and after any manipulation of the catheter site.
- Insert catheters by use of aseptic technique and sterile equipment.
- Use gloves, a drape, and sponges;
 - a sterile or antiseptic solution for cleaning the urethral meatus
 - single-use packet of sterile lubricant jelly for insertion.
- Use as small a catheter as possible that is consistent with proper drainage, to minimize urethral trauma.

Basic practices for prevention and monitoring of CA-UTI

A. Appropriate infrastructure for preventing CA-UTI
B. Surveillance of CA-UTI
C. Education and training
D. Appropriate technique for catheter insertion
E. Appropriate management of indwelling catheters
F. Accountability
Appropriate management of indwelling catheters (1)

- Properly secure indwelling catheters after insertion to prevent movement and urethral traction.
- Maintain a sterile, continuously closed drainage system.
- Do not disconnect the catheter and drainage tube unless the catheter must be irrigated.
- If needed, replace the collecting system by use of aseptic technique and after disinfecting the catheter-tubing junction.

Appropriate management of indwelling catheters (2)

- Collect urine sample by aspirating urine from the sampling port with a sterile needle and syringe after cleansing the port with disinfectant.
- Maintain unobstructed urine flow.
- Empty the collecting bag regularly, using a separate collecting container for each patient.
- Keep the collecting bag below the level of the bladder at all times.
- Cleaning the meatal area with antiseptic solutions is unnecessary; routine hygiene is appropriate.

Basic practices for prevention and monitoring of CA-UTI

A. Appropriate infrastructure for preventing CA-UTI
B. Surveillance of CA-UTI
C. Education and training
D. Appropriate technique for catheter insertion
E. Appropriate management of indwelling catheters
F. Accountability

Accountability

- The hospital's chief executive officer, senior management and all HCWs are responsible to facilitate and implement the structure and measures to effectively prevent CA-UTIs.

Approaches that should not be considered a routine part of CA-UTI prevention

For exact details look at SHEA/IDSA Practice Recommendations
Infection Control Hospital Epidemiology 2008;29:S41-S50

- Do not screen for asymptomatic bacteruria in catheterized patients.
- Avoid catheter irrigation.
 - Do not perform continuous irrigation of the bladder with antimicrobials as a routine infection prevention measure.
- Do not use systemic antimicrobials routinely as prophylaxis.
- Do not change catheters routinely.
- Do not routinely use silver-coated or other antibacterial catheters.
Antimicrobial Coated Catheters

- In patients with short-term indwelling urethral catheterization, antimicrobial (silver alloy or antibiotic)-coated urinary catheters may be considered to reduce or delay the onset of CA-bacteriuria.
 - Data are insufficient to make a recommendation about whether use of such catheters reduces CA-UTI in patients with short-term indwelling urethral catheterization.
 - Data are insufficient to make a recommendation as to whether use of such catheters reduces CA-bacteriuria or CA-UTI in patients with long-term catheterization.

Meta-analysis of prospective randomized trials of silver oxide and silver alloy-hydrogel catheters.

Novel technology (1)

- Antiinfective catheter material
 - Antimicrobial drug-impregnated
 - Nitrofurazone 0.7
 - Minocycline-rifampin 0.4
 - Silver oxide unproven
 - Silver-hydrogel 0.2 – 0.7

Novel technology (1)

- Antiinfective lubricant unproven
- Sealed catheter-collection tubing junctions unproven
- Antireflux valves unproven
- Continuous irrigation of bladder with antiinfective unproven
- Antiinfectives is col.-bag unproven

* Increase of infections

The future

- Microbe-impervious antireflux valves
- Urethral stents
 - alternative in man with obstructions
- Conformable (collapsible) urethral catheters
 - causes less trauma
- New antiseptics and surface technologies
- Vaccines for enteric Gram- and staphylococci

Seperate patients c/s catheter

Say “AH” Is it contagious Doctor?
Summary of Recommendations From Published Guidelines (1)

- Ensure documentation of catheter insertion
- Ensure that trained personnel insert catheter
- Train patients and family
- Practice hand hygiene
- Evaluate necessity of catheterization
- Evaluate alternative methods
- Review ongoing need regularly
- Select catheter material
- Use smallest-gauge catheter possible
- Use aseptic technique/sterile equipment
- Use barrier precautions for insertion
- Perform antiseptic cleaning of meatus

Summary of Recommendations From Published Guidelines (2)

- Use closed drainage system
- Obtain urine samples aseptically
- Replace system if a break in asepsis occurs
- Do not change catheter routinely
- Perform routine hygiene for meatal care
- Avoid irrigation
- Cohort patients
- Ensure compliance with training
- Ensure compliance with control measures
- Ensure compliance with catheter removal
- Monitor rates of CAUTI and bacteremia

UTI bundle

- Hand hygiene
- Insertion kit
 - Cleaning reagent + disinfectant + lubricant
 - Sterile cover and cloves
 - Catheter and syringe
- Maintenance
 - Keeping bag low
 - Reduce contamination in manipulations
- Daily assessment
 - Need/removal

Extra slides not presented on-line
Prevention of CA-UTI

- Avoid unnecessary catheterization – remove as soon as possible
- Consider alternatives (suprapubic, condom)
- Aseptic insertion by trained professional (sterile gloves, fenestrated sterile drape, skin disinfection)
- Maintain closed drainage
- Ensure dependent drainage (below patient’s bladder, but tubing above bag!)
- Minimize manipulations of the system

Limiting the duration of catheterization

- Indwelling urethral catheters are frequently used when not indicated or, remain in situ longer than necessary.
- Optimal approaches to limit catheter use and duration may be dependent on facility characteristics.
- Approaches to limit catheter use and duration reported to be effective include the following:
 - (a) Implementing procedure-specific guidelines for postoperative catheter removal
 - (b) Providing guidelines to manage postoperative retention, which may include the use of bladder scanners
 - (c) Providing reminders to physicians to review the need for continued catheterization and/or to remove catheters
 - (d) Development of care plans directing nurse removal of catheters for patients who meet prespecified criteria

Limiting Unnecessary Catheterization

- Indwelling catheters should be placed only when they are indicated.
 - Should not be used for the management of urinary incontinence (or only in exceptional cases, when all other approaches to management of incontinence failed).
- List of appropriate indications for inserting indwelling urinary catheters
 - Educate staff about such indications
 - Periodically assess adherence to the guidelines
- Physician’s order in the chart before an indwelling catheter is placed.
- Portable bladder scanners to determine whether catheterization is necessary for postoperative patients.

Alternatives to an indwelling urethral catheter

- External condom catheter drainage for men compared with a short-term indwelling urethral catheter reduced acquisition of bacteriuria and adverse outcomes and was more acceptable to the patient.
- In-and-out catheterization was as effective as the use of an indwelling catheter for management of postoperative retention.
- Fewer complications with use of a suprapubic catheter, but surgical insert is associated with additional risks.
- Current evidence is not sufficient to support the routine use of a suprapubic catheter for short-term catheterization.

Closed Catheter System

- Use a closed catheter drainage system, with ports in the distal catheter for needle aspiration of urine
 - In patients with short-term and long-term indwelling urethral or suprapubic catheters
- Minimize disconnection of the catheter junction
- Keep the drainage bag and connecting tube always below the level of the bladder
- Use of a pre-connected system (catheter pre-attached to the tubing of a closed drainage bag) may be considered
 - Data are insufficient as to whether such a system reduces CA-UTI.

Prophylaxis with Systemic Antimicrobials

- Systemic antimicrobial prophylaxis should not be routinely used in patients with short-term (A-III) or long-term (A-II) catheterization, including patients who undergo surgical procedures, to reduce CA-bacteriuria or CA-UTI because of concern about selection of antimicrobial resistance.
Enhanced Meatal Care

- Daily meatal cleansing with povidone-iodine solution, silver sulfadiazine, polyantibiotic ointment or cream, or green soap and water is not recommended for routine use in men or women with indwelling urethral catheters to reduce CA-bacteriuria (A-I). Data are insufficient to make a recommendation as to whether meatal cleansing reduces the risk of CA-UTI.

Catheter Irrigation

- Catheter irrigation with antimicrobials should not be used routinely to reduce or eradicate CA-bacteriuria (A-I) or CA-UTI (A-II) in patients with indwelling catheters. Catheter irrigation with antimicrobials may be considered in selected patients who undergo surgical procedures and short-term catheterization to reduce CA-bacteriuria (C-I). Data are insufficient to make a recommendation about whether bladder irrigation in such patients reduces CA-UTI. Catheter irrigation with normal saline should not be used routinely to reduce CA-bacteriuria, CA-UTI, or obstruction in patients with long-term indwelling catheterization (B-II).

Routine Catheter Change

- Data are insufficient to make a recommendation as to whether routine catheter change (eg, every 2–4 weeks) in patients with functional long-term indwelling urethral or suprapubic catheters reduces the risk of CA-ASB or CA-UTI, even in patients who experience repeated early catheter blockage from encrustation.

Prophylactic Antimicrobials at Time of Catheter Removal or Replacement

- Prophylactic antimicrobials, given systemically or by bladder irrigation, should not be administered routinely to patients at the time of catheter placement to reduce CA-UTI (A-I) or at the time of catheter removal (B-I) or replacement (A-III) to reduce CA-bacteriuria. Data are insufficient to make a recommendation as to whether administration of prophylactic antimicrobials to such patients reduces bacteremia.

Urine Culture and Catheter Replacement before Treatment

- A urine specimen for culture should be obtained prior to initiating antimicrobial therapy for presumed CA-UTI because of the wide spectrum of potential infecting organisms and the increased likelihood of antimicrobial resistance (A-III). If an indwelling catheter has been in place for >2 weeks at the onset of CA-UTI and is still indicated, the catheter should be replaced to hasten resolution of symptoms and to reduce the risk of subsequent CA-bacteriuria and CA-UTI (A-I). The urine culture should be obtained from the freshly placed catheter prior to the initiation of antimicrobial therapy to help guide treatment (A-II). If use of the catheter can be discontinued, a culture of a voided midstream urine specimen should be obtained prior to the initiation of antimicrobial therapy to help guide treatment (A-III).

Duration of Treatment

- Seven days is the recommended duration of antimicrobial treatment for patients with CA-UTI who have prompt resolution of symptoms (A-III), and 10–14 days of treatment is recommended for those with a delayed response (A-III), regardless of whether the patient remains catheterized or not. A 5-day regimen of levofloxacin may be considered in patients with CA-UTI who are not severely ill (B-III). Data are insufficient to make such a recommendation about other fluoroquinolones. A 3-day antimicrobial regimen may be considered for women aged 65 years who develop CA-UTI without upper urinary tract symptoms after an indwelling catheter has been removed (B-II).
Antimicrobials in the Drainage Bag

- Routine addition of antimicrobials or antiseptics to the drainage bag of catheterized patients should not be used to reduce CA-bacteriuria (A-I) or CA-UTI (A-I).