Stopping URIs and Flu in the Family: The STUFFY Trial
Dr. Elaine Larson, Columbia University School of Medicine
A Webber Training Teleclass

Enrolled Households

Hosted by Dr. Lynne Sehulster, Centers for Disease Control & Prevention

Household Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Educational Group</th>
<th>Sanitizer Group</th>
<th>Sanitizer + Mask Group</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 members</td>
<td>10.8% (19/174)</td>
<td>13.0% (22/169)</td>
<td>13.9% (23/166)</td>
<td>0.83</td>
</tr>
<tr>
<td>4-5 members</td>
<td>51.1% (89/174)</td>
<td>46.2% (78/169)</td>
<td>45.8% (76/166)</td>
<td></td>
</tr>
<tr>
<td>>5 members</td>
<td>37.1% (66/174)</td>
<td>40.8% (69/169)</td>
<td>40.4% (67/166)</td>
<td></td>
</tr>
</tbody>
</table>

Demographics of main responders

- Age <40 years
 - 83.3% (145/174)
 - 82.2% (139/169)
 - 82.5% (137/166)
 - p-value 0.96

- Education ≤ high school
 - 46.0% (80/174)
 - 43.2% (73/169)
 - 38.0% (63/166)
 - p-value 0.32

- Born outside the U.S.
 - 90.2% (157/174)
 - 90.5% (153/169)
 - 92.8% (154/166)
 - p-value 0.67

Average Number of Symptoms/Individual/Quarter

- Households with at least one symptom reported: 83.3% (424/509)

Members with no symptoms: 48.6% (1,355/2,788)

Members with no symptoms by intervention group:

- Education Group: 49.4% (447/904)
- Sanitizer Group: 57.6% (545/946)
- Sanitizer + Mask Group: 38.7% (363/938)

p-value < 0.01

Hosted by Dr. Lynne Sehulster, Centers for Disease Control & Prevention
www.webbertraining.com
Stopping URIs and Flu in the Family: The STUFFY Trial
Dr. Elaine Larson, Columbia University School of Medicine
A Webber Training Teleclass

Influenza-like Illness (ILI)

REPORTED ILI EPISODES

- **669**
 - Samples Collected: 230
 - Unable to Reach: 29
 - Unable to Collect: 20
 - Unable to Test: 5

Samples Posed for Influenza

- Flu: 84
- Flu A: 34
- Flu B: 44
- Unable to Reach: 29
- Unable to Collect: 20
- Unable to Test: 5

Tests Posed for Influenza

- Positive for Influenza: 136
- Negative for Influenza: 156
- Flu A: 34
- Flu B: 44
- Unable to Reach: 29
- Unable to Collect: 20
- Unable to Test: 5

Among the 156 negatives for influenza, there were seven RSV, one paraflu type 1, three paraflu type 2, two paraflu type 3, eleven enterovirus, ten rhinovirus, six adenovirus and five human metapneumovirus.

*80.6% were diagnosed to have a bacterial infection and prescribed an antibiotic.

ABX prescribed

- 146* (46.6% were diagnosed to have a bacterial infection)

P-value: 0.61

ANOVA

Lab Confirmed Influenza

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Mean lab-confirmed influenza/100 persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>4.1</td>
</tr>
<tr>
<td>Hand Sanitizer</td>
<td>4.1</td>
</tr>
<tr>
<td>Face Mask</td>
<td>3.6</td>
</tr>
</tbody>
</table>

P-value: 0.57

ANOVA

Multivariate Analyses

- **Poisson GEE (Generalized estimating equation) applied to URI and ILI outcomes**
- **Logistic GEE applied to influenza outcomes**
- **Covariates adjusted:**
 - Gender
 - Age
 - Occupation
 - Education level
 - Place of birth (in/out of U.S.)
 - Hours spent outside of home
 - Vaccination status
 - Respiratory illnesses (e.g., asthma, COPD)
 - Number of children in household
 - Compliance with symptom reporting
 - Frequency of hand washing
 - Crowding index

Results

- **Individuals born in the U.S. had ~1.5 more URI episodes than those born outside the U.S. (mean: 2.3 and 1.4 episodes/person, p=0.004)**
- **Younger individuals had higher rates of URI (p=0.001)**
- **Individuals with respiratory illness had 1.4 times more URI episodes than those without (2.5 and 1.8 episodes/person, p=0.009)**

Results

- **Men had significantly fewer URI and ILI than women**
- The odds of getting influenza were 5.16 times higher for college graduates as compared to those with less than high school education.
- The odds of getting influenza were 2.56 times higher for homemakers and those unemployed compared to other professions.
- **No significant differences among the three groups**

Hosted by Dr. Lynne Sehulster, Centers for Disease Control & Prevention
www.webbertraining.com
Stopping URIs and Flu in the Family: The STUFFY Trial
Dr. Elaine Larson, Columbia University School of Medicine
A Webber Training Teleclass

Secondary Cases of Flu/ILI/URI

<table>
<thead>
<tr>
<th>INTERVENTION GROUP</th>
<th>Relative Risk (95% Confidence Limits)</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education Group</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>Hand Sanitizer Group</td>
<td>1.01 (.95, 1.21)</td>
<td></td>
</tr>
<tr>
<td>Hand Sanitizer + Mask Group</td>
<td>0.82 (.77, .87)</td>
<td>p-value: 0.82*</td>
</tr>
<tr>
<td>Total</td>
<td>0.65 (1.16/3,274)</td>
<td></td>
</tr>
</tbody>
</table>

*Regression controlling for gender, age group, whether or not born in the
U.S., number of hours spent outside of the home, whether or not had
a chronic respiratory illness such as asthma, and influenza
vaccination status, household crowding

Secondary Cases of Flu/ILI/URI: Other Predictors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of index case, 0-5 yrs, compared to adult</td>
<td>.81 (.70, .94)</td>
</tr>
<tr>
<td>Caretaker education</td>
<td>.79 (.61, 1.03)</td>
</tr>
</tbody>
</table>

Crowding

- Crowding Index: Ratio of the number of people in the
 household divided by the number of rooms
- Relative Risk: .80 (.72, .89), p< .001
- Corresponds to the decrease in odds of a secondary
 case when crowding is increased by 1
- More crowding—fewer URIs!

Mask Usage for Confirmed ILIs and Flu (n=68 episodes)

- Episodes where masks were used: 65.9% (38/68)
- Mean number of masks used/day/episode (includes
 collected and self-reported): 2 masks

- Who is wearing the masks?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Index Case</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most or some of the time</td>
<td>27.9% (19)</td>
<td>25.0% (17)</td>
</tr>
</tbody>
</table>

Reasons for Poor Masking

- Focus group and home visits with a subset (15
 households) of the face mask group employing the
 “think aloud” technique
- No significant association between any of the
demographic, attitudinal or knowledge variables
measured and adherence to wearing masks

Hosted by Dr. Lynne Sehulster, Centers for Disease Control & Prevention
www.webbertraining.com
Reasons for Poor Masking

- Mask group had higher risk perceptions about flu (means: 37.6 and 30.2, p=0.001) and perception of effectiveness of mask wearing (means: 7.6 and 7.3, p=0.043)
- Themes: difficulty for children to wear masks, social acceptability, comfort and fit, level of activity/physical exertion and mask use, and perception of risk/need for mask.

Knowledge, Attitudes, and Practices
(Maximum score: 98)

<table>
<thead>
<tr>
<th></th>
<th>Educational Group</th>
<th>Sanitizer Group</th>
<th>Mask and Sanitizer Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>5.12</td>
<td>5.48</td>
<td>5.11</td>
</tr>
<tr>
<td>Post</td>
<td>5.75</td>
<td>7.24</td>
<td>6.40</td>
</tr>
<tr>
<td>Diff</td>
<td>0.63</td>
<td>1.76</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Regression analysis comparing differences scores between groups (p<0.001)

Antibiotics for Viral Symptoms

- 100 in-depth interviews
- 191 uses of antibiotics were reported.
- 45/191 (23.6%) were self-medicated.
- Self-medication was rare among children (67.6% of reported antibiotic use in participants under 18 was by prescription), but common among participants over 18 where 48/64 (72.0%) of antibiotic use was by self-medication.
- Non-US versions of antibiotics accounted for 25/191 (13.1%)

Sensitivity and Specificity of Rapid Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Sens</th>
<th>Spec</th>
<th>PV+</th>
<th>PV-</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickVue Influenza A</td>
<td>0.48</td>
<td>1.00</td>
<td>1.00</td>
<td>0.89</td>
</tr>
<tr>
<td>(n=138) Influenza B</td>
<td>0.22</td>
<td>0.99</td>
<td>0.89</td>
<td>0.78</td>
</tr>
<tr>
<td>Influenza A+B</td>
<td>0.33</td>
<td>0.96</td>
<td>0.95</td>
<td>0.64</td>
</tr>
<tr>
<td>3M Influenza A</td>
<td>0.28</td>
<td>0.96</td>
<td>0.58</td>
<td>0.86</td>
</tr>
<tr>
<td>(n=146) Influenza B*</td>
<td>0.39</td>
<td>0.97</td>
<td>0.83</td>
<td>0.81</td>
</tr>
<tr>
<td>Influenza A+B</td>
<td>0.33</td>
<td>0.92</td>
<td>0.77</td>
<td>0.64</td>
</tr>
</tbody>
</table>

* Two samples were positive for both influenza A and B, but lab confirmed it as influenza B

Vaccination

- 46.6% among children <5 years, 55.9% among 5-17 years, 26.2% among 18-49 year, 45.7% among 50-64 year, and 35.0% among adults ≥65 years
- Major barrier: belief that influenza vaccination was unnecessary or ineffective

Predictors of Vaccination

- For children, younger age, having a chronic respiratory condition (e.g. asthma), and greater respondent knowledge of influenza
- For adults, female gender, older age, higher education, greater respondent knowledge of influenza, having been born in the U.S., and having a chronic respiratory condition

Hosted by Dr. Lynne Sehulster, Centers for Disease Control & Prevention
www.webbertraining.com
Stopping URIs and Flu in the Family: The STUFFY Trial
Dr. Elaine Larson, Columbia University School of Medicine
A Webber Training Teleclass

New Findings

- Efficacy of soap and water and alcohol-based handrub preparations against live H1N1 Influenza virus on hands of human volunteers
- Marked antiviral activity for both by culture and PCR, but soap and water was superior (p<0.01), although actual difference was only 1-100 virus copies/ml

Conclusions

- No significant difference between intervention groups in terms of numbers of URI, ILI and flu but secondary attack rate lower in mask group
- Increased KAP scores
- Increased vaccination among household members
- Low compliance with mask wearing
- NPIs will likely continue to be an important strategy to minimize flu; their efficacy and effectiveness should be further assessed
- Further evaluations of rapid influenza tests

Contributions to Knowledge

- Targeted education and increased hand hygiene in general were likely important interventions ("controls")
- Mask wearing difficult to enforce
- Screening tests of low sensitivity
- Sources of information vary by ethnic group
- Parents self-medicated with antibiotics for themselves, but not their children

Gaps/Next Steps

- Mask wearing during outbreaks—how frightened do people have to be?
- Effect of targeted education alone
- Factors associated with low sensitivity of rapid tests

The Next Few Teleclasses

- 25 Feb. 10 Influenza in the Hospital - Who Gets it From Whom
 Speaker: Dr. Alison McGeer, Mount Sinai Hospital, Toronto
- 4 Mar. 10 (Novice Teleclass) An Introduction to Infection Prevention and Control in Healthcare
 Speaker: Gail Bennett, ICP Associates Inc.
- 11 Mar. 10 (Novice Teleclass) MRSA Prevention Basics
 Speaker: Dr. Bill Jarvis, Jason & Jarvis Associates
- 18 Mar. 10 (Novice Teleclass) How to Prepare for CIC Certification Without Becoming Certification
 Speaker: Susan Cooper, Southeastern Ontario Infection Control Network
- 23 Mar. 10 (Free Teleclass) Voices of CHICA
 Speaker: Directors & Guests of the Community & Hospital Infection Control Association of Canada
- 25 Mar. 10 (Novice Teleclass) Infections in the Elderly
 Speaker: Christine Nutty, Infection Advice Inc.

THE NEXT FEW TELECLASSES

www.webbertraining.com/schedulep1.php

Hosted by Dr. Lynne Sehulster, Centers for Disease Control & Prevention
www.webbertraining.com

Team Members

Left to right: Maria Alvarez-Cid, Maria Jose Gonzalez, Jennifer Wong-McLaughlin, Elaine Larson, Angela Barnett, Yuchul Fang

Stephen S. Morse, PhD
Shuang Wang, PhD
Stopping URIs and Flu in the Family: The STUFFY Trial
Dr. Elaine Larson, Columbia University School of Medicine
A Webber Training Teleclass

www.webbertraining.com