The Spaulding Classification, Disinfection and Sterilization – Is it Time to Reconsider
Dr. Gerald McDonnell, STERIS Corporation
A Webber Training Teleclass

The Spaulding Classification, Disinfection and Sterilization: Is it Time to Reconsider?

Dr. Gerald McDonnell
STERIS Corporation

Hosted by
Prof. Jean-Yves Maillard
Cardiff University, Wales

April 28, 2011

Disclaimers

- Dr. McDonnell is an employee of STERIS Corporation
- This presentation reflects the personal opinions of the presenter and not necessarily his employer’s
- Any implied or otherwise efficacy claims (including against prions) or on reducing the risks associated microbial contamination (including with prions) are not currently regulated or approved by the US FDA
The Spaulding Classification, Disinfection and Sterilization – Is it Time to Reconsider
Dr. Gerald McDonnell, STERIS Corporation
A Webber Training Teleclass

Definitions

- **Cleaning**
 - The removal of contamination from a surface to the extent necessary for further processing or for intended use.

- **Disinfection**
 - The process of reduction of the number of viable microorganisms to a level previously specified
 - Other terms may be used such as ‘sanitization’, ‘pasteurization’ and various levels of disinfection (high, intermediate and low)

- **Sterilization**
 - Validated process to render a product/surface free from viable microorganisms, including bacterial spores.

Spaulding (1972)

- Sterilization is the destruction of all microbial forms
- Disinfection is something less than sterilization
- Can destroy most- and often all-microbial organisms
- Microbial resistance (3 groups)
 - Most vegetative bacteria/fungi, large/medium lipid viruses
 - Tubercle bacilli, small non-lipid viruses
 - Bacterial spores
- Levels of germicidal (disinfection) action (3 groups)
 - Low level
 - Intermediate level
 - High level

1957: Hirschowitz, University of Michigan
First Fiberoptic Endoscopes

Hosted by Jean-Yves Maillard, Cardiff University, Wales
info@webbertraining.com
www.webbertraining.com
The Spaulding Classification, Disinfection and Sterilization – Is it Time to Reconsider

Dr. Gerald McDonnell, STERIS Corporation

A Webber Training Teleclass

Hosted by Jean-Yves Maillard, Cardiff University, Wales
info@webbertraining.com
www.webbertraining.com

<table>
<thead>
<tr>
<th>Patient Contact</th>
<th>Examples</th>
<th>Device Classification</th>
<th>Minimum Inactivation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact skin</td>
<td></td>
<td>Non-Critical</td>
<td>Cleaning and/or Low/Intermediate Level Disinfection</td>
</tr>
<tr>
<td>Mucous membranes or non-intact skin</td>
<td></td>
<td>Semi-Critical</td>
<td>High Level Disinfection</td>
</tr>
<tr>
<td>Sterile areas of the body, including blood contact</td>
<td></td>
<td>Critical</td>
<td>Sterilization</td>
</tr>
</tbody>
</table>

Microbiology

- The study of microscopic ‘life’ ('micro-organisms')
- Microorganisms
 - Bacteria
 - Viruses
 - Fungi
 - Protozoa
 - Helminths ('worms')
- They are not ‘simple’
 - Complex, diverse, adaptable.....
Life on Earth is overwhelmingly microbial. In fact, the extent of microbial diversity is so great that scientists have difficulties estimating its actual size. Some estimates place the number of microbial species in the range of billions, exceeding the number of species of "large" organisms by several orders of magnitude.

Harvard Magazine, 2007

Extreme Resistance

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiothrix</td>
<td>Arsenic/Copper Resistance</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>Biofilm Formation</td>
</tr>
<tr>
<td>Deinococcus</td>
<td>Radiation</td>
</tr>
<tr>
<td>Pyrolobus</td>
<td>Temperature (>85°C)</td>
</tr>
<tr>
<td>Helicobacter</td>
<td>Acidic pH (1-2)</td>
</tr>
<tr>
<td>Geobacillus</td>
<td>All Biocides</td>
</tr>
</tbody>
</table>

Pathogen Surprises

- Viruses
- Bacteria
- Mycobacteria
- Protozoa
- Prions

Virus Structure

- Non-Enveloped
 - Nucleic Acid
 - Protein
 - Capsid

- Enveloped
 - Envelope
 - Nucleocapsid

Non-Enveloped Viruses

<table>
<thead>
<tr>
<th>Virus</th>
<th>Host (s) of Infection</th>
<th>1976 Acquired Immunodeficiency Syndrome (AIDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echovirus 3</td>
<td>1966 Poliomyelitis (POL)</td>
<td>Varicella-zoster, cytomegalovirus, herpes zoster, encephalitis, postherpetic neuralgia</td>
</tr>
<tr>
<td>Echovirus 7</td>
<td>1966 Poliomyelitis (POL)</td>
<td>Poliomyelitis, necrotizing fasciitis, postherpetic neuralgia</td>
</tr>
<tr>
<td>Coxsackie A9</td>
<td>1943</td>
<td>Acute meningitis, encephalitis</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>1943</td>
<td>Diarrhea, gastroenteritis</td>
</tr>
<tr>
<td>Adenovirus 37</td>
<td>1943</td>
<td>Acute pneumonia</td>
</tr>
<tr>
<td>Astrovirus</td>
<td>1943</td>
<td>Acute gastroenteritis</td>
</tr>
<tr>
<td>Picornavirus</td>
<td>1943</td>
<td>Hand, foot, mouth disease</td>
</tr>
<tr>
<td>Norovirus</td>
<td>1943</td>
<td>Norovirus gastroenteritis</td>
</tr>
</tbody>
</table>

Hosted by Jean-Yves Maillard, Cardiff University, Wales
info@webbertraining.com
www.webbertraining.com
Examples: Parvoviruses

- Non-enveloped, hydrophilic
- Small; 18-26nm
- Single stranded, DNA virus
- Highly resistant to disinfection

Heat exposure conditions

<table>
<thead>
<tr>
<th>disinfectant</th>
<th>Contact time</th>
<th>disinfectant reduction (log.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol (70%)</td>
<td>10 mins</td>
<td>≤1</td>
</tr>
<tr>
<td>QUAT (0.05%)</td>
<td>10 mins</td>
<td>≤1</td>
</tr>
<tr>
<td>Bleach (1:10)</td>
<td>10 mins</td>
<td>0.6 to 3</td>
</tr>
<tr>
<td>2% glutaraldehyde</td>
<td>20 mins</td>
<td>3 to 4</td>
</tr>
<tr>
<td>0.5% DPA</td>
<td>10 mins</td>
<td>3 to 4</td>
</tr>
<tr>
<td>0.2% PAA (at 20°C)</td>
<td>10 mins</td>
<td>≥4</td>
</tr>
</tbody>
</table>

Disinfectant

- Parvoviruses
- Polio
- Adeno
- Vaccine

- **Examples:**
 - Polio
 - Adeno
 - Vaccine

Resistance…..is futile?

- Intrinsic (Natural)
 - Cell wall surface
 - Spore formation
 - Biofilm formation
- Acquired
 - Mutations
 - Plasmid/transposon acquisition
The Spaulding Classification, Disinfection and Sterilization – Is it Time to Reconsider
Dr. Gerald McDonnell, STERIS Corporation
A Webber Training Teleclass

Hosted by Jean-Yves Maillard, Cardiff University, Wales
info@webbertraining.com
www.webbertraining.com

Mycobacterium
- Slow to very slow growing bacteria, acid-fast, generally Gram+, aerobic, rod-shaped
- Typical pathogens: *M. tuberculosis, M. leprae, M. avium*
- Atypical: *M. chelonae, M. gordonae, M. fortuitum*
- Commonly found in water

Glutaraldehyde-Resistance
- van Klinger and Pullen (1993)
- Repeated isolation from a washer-disinfector
- Netherlands
- Used 2% glutaraldehyde
- *Isolated Mycobacterium chelonae*
- Not inactivated at 60 min exposure to 2% GTA
- Griffiths *et al.* (1997)
- *Isolated* Mycobacterium chelonae
- From multiple washer-disinfectors in the UK
- Used 2% glutaraldehyde
- Misidentification and iatrogenic infections
- Not inactivated at 60 min exposure to 2% GTA

M. chelonae strains

“Hybrid” mycobacteria strains

2% Glutaraldehyde

Keratitis
- *M. abscessus*
- *M. chelonae*

Surgical Site Infections
- *M. abscessus*
- *M. chelonae*
The Spaulding Classification, Disinfection and Sterilization – Is it Time to Reconsider
Dr. Gerald McDonnell, STERIS Corporation
A Webber Training Teleclass

USA Study
- Washer-Disinfectors (USA)
 - 3 tested
 - Post cleaning-disinfection-rinsing cycles
 - Disinfectants
 - 2.5% glutaraldehyde at 25C
 - 2.3% glutaraldehyde at 35C
 - 0.55% OPA at 25C
- Microbiology
 - Rinse water (100mL) and swab sites (10)
 - Culturing
 - Mesophilic, aerobic bacteria: TSA agar, 30C, 7 days
 - Mycobacteria: 7H11 agar, 30C, 7-14 days
 - Analysis
 - Identification
 - Biocide sensitivity
 - Resistance investigations

Results
- All washer-disinfectors contaminated post-disinfection cycles
- Range of bacteria identified
 - Many could not be sub-cultured
 - Identifications
 - Mycobacterium
 - Methylobacterium

Contamination Sources
- Contaminated rinse water
 - Same organisms found in the rinse water/lines
- Inadequate disinfection
- Biofilm development
 - Organisms sensitive to disinfectant when isolated
- Disinfectant resistance
 - Mycobacterium

Hosted by Jean-Yves Maillard, Cardiff University, Wales
info@webbertraining.com
www.webbertraining.com
Summary

- Mycobacteria can develop high resistance to aldehyde (glutaraldehyde and OPA) disinfectants
- Can survive normal high level disinfection
- Resistance appears to be due to changes in cell wall structure
 - e.g., deficient in porin proteins (MspA, MspA/C)
- Cross-resistance observed to antibiotics
 - e.g., rifampicin, vancomycin, tetracycline, clarithromycin
- Other impacts
 - Increased pathogenicity

Protozoa

- One of the most abundant forms of microorganisms
- Often difficult to cultivate and diagnose under laboratory conditions
- Pathogen examples
 - *Giardia*
 - *Cryptosporidium*
 - *Plasmodium*
 - *Acanthamoeba*

Oocyst Disinfection

<table>
<thead>
<tr>
<th>Biocide</th>
<th>C. parvum activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam</td>
<td>+</td>
</tr>
<tr>
<td>ETO</td>
<td>+</td>
</tr>
<tr>
<td>VHP</td>
<td>+</td>
</tr>
<tr>
<td>Gas Plasma</td>
<td>+</td>
</tr>
<tr>
<td>SYSTEM 1</td>
<td>+</td>
</tr>
<tr>
<td>Liquid Peroxide</td>
<td>+/-*</td>
</tr>
<tr>
<td>Liquid PAA</td>
<td>+/-*</td>
</tr>
<tr>
<td>2% Glutaraldehyde</td>
<td>-</td>
</tr>
<tr>
<td>0.55% OPA</td>
<td>-</td>
</tr>
</tbody>
</table>

*Depends on temperature, concentration and contact time

Barbee et al., 1999
Sell et al., 1999
Quilez et al., 2005

Cryptosporidium parvum

- **Acantameoba Cyst**

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Contact Time</th>
<th>Disinfectant Reduction (Log₁₀)</th>
<th>Collection Strains</th>
<th>Hospital Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot water (55°C)</td>
<td>10 mins</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Hot water (60°C)</td>
<td>10 mins</td>
<td>>5</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>Bleach (1/10)</td>
<td>10 mins</td>
<td>2 to >5</td>
<td>0 to >3.5</td>
<td>1 to >5</td>
</tr>
<tr>
<td>2% Glutaraldehyde</td>
<td>20 mins</td>
<td>>5</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>0.55% OPA</td>
<td>10 mins</td>
<td>2 to 3</td>
<td>1 to 4</td>
<td></td>
</tr>
<tr>
<td>2% Hydrogen Peroxide</td>
<td>10 mins</td>
<td>>5</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>0.2% PAA (at 55°C)</td>
<td>10 mins</td>
<td>>5</td>
<td>>5</td>
<td></td>
</tr>
</tbody>
</table>

Coulon et al., 2010. Journal of Clinical Microbiology, 48, 2689-2697.

Acantameoba Trophozoites

- Trophozoites in suspension

Cryptosporidium parvum

Coulon et al., 2010. 2% glutaraldehyde, 20 mins
The Spaulding Classification, Disinfection and Sterilization – Is it Time to Reconsider
Dr. Gerald McDonnell, STERIS Corporation
A Webber Training Teleclass

More that just Protozoa

Amoebal Trophozoite
Amoebal Cysts

Prion Diseases

- What are ‘Prions’?
- Still debated!
- Proteins
- Appear to be devoid of nucleic acid
- Identified as the causative agents for a group of central nervous system diseases
 - TSEs
 - CJD, vCJD

Infection Control Concerns

- 100% fatal
- Transmissible
- Medical/surgical devices
- Tissues, including blood
- Environment
- ‘Resistance’
- Cleaning
- Disinfection/Sterilization

Cleaning

<table>
<thead>
<tr>
<th>Method</th>
<th>‘Log’ Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Washing + Steam Sterilization¹</td>
<td>~5.5</td>
</tr>
<tr>
<td>Kleenzyme</td>
<td>~4.5</td>
</tr>
<tr>
<td>Enzyme Cleaner 2</td>
<td>~1</td>
</tr>
<tr>
<td>Kleenzyme + Steam Sterilization²</td>
<td>~6.5</td>
</tr>
<tr>
<td>Enzyme Cleaner 2 + Steam Sterilization²</td>
<td>~3.0</td>
</tr>
</tbody>
</table>

¹134°C x 18 mins
²121°C x 20 mins

Alkaline Cleaning

<table>
<thead>
<tr>
<th>Method</th>
<th>‘Log’ Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamo100 (1.6%; 43°C; 15 mins)</td>
<td>>5</td>
</tr>
<tr>
<td>Prolystica Alkaline 2x (0.4%; 5 mins, 65°C) + steam sterilization (134°C; 4 mins)</td>
<td>>5</td>
</tr>
<tr>
<td>Prolystica Alkaline 10x (0.04%; 5 mins, 65°C) + steam sterilization (134°C; 4 mins)</td>
<td>>5</td>
</tr>
</tbody>
</table>

Hosted by Jean-Yves Maillard, Cardiff University, Wales
info@webbertraining.com
www.webbertraining.com
The Spaulding Classification, Disinfection and Sterilization – Is it Time to Reconsider
Dr. Gerald McDonnell, STERIS Corporation
A Webber Training Teleclass

Chemical Sterilization

<table>
<thead>
<tr>
<th>Method</th>
<th>Test Parameters</th>
<th>'Log' Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-Pro 1</td>
<td>1, 3 or 6 pulses at ~1.6mg/L gas under vacuum</td>
<td>>5</td>
</tr>
<tr>
<td>Gas Plasma (STERRAD 10X)</td>
<td>1 or 2 Advanced Cycles at ~ 8mg/L gas under vacuum</td>
<td>>5</td>
</tr>
<tr>
<td>Gas Plasma (STERRAD 100S)</td>
<td>2 or 4 pulses at ~ 8mg/L gas under vacuum</td>
<td>~1</td>
</tr>
</tbody>
</table>

Conclusions

The A. Denver Russell Memorial Lecture