

Disinfection and Sterilization

EH Spaulding believed that how an object will be disinfected depended on the object's intended use.

CRITICAL - objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile. SEMICRITICAL - objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms but high numbers of bacterial spores.

NONCRITICAL -objects that touch only intact skin require low-level disinfection (or non-germicidal detergent).

Efficacy of Disinfection/Sterilization Influencing Factors

Cleaning of the object

Organic and inorganic load present

Type and level of microbial contamination

Concentration of and exposure time to disinfectant/sterilant

Nature of the object

Temperature and relative humidity

Processing "Critical" Patient Care Objects

Classification:	Critical objects enter normally sterile tissue or vascular system, or through which blood flows.
Object:	Sterility.
Level germicidal ad	ction: Kill all microorganisms, including bacterial spores.
Examples:	Surgical instruments and devices; cardiac catheters; implants; etc.
Method:	Steam, ETO, hydrogen peroxide gas plasma, vaporized hydrogen peroxide, ozone or chemical sterilization.

Critical Objects

- Surgical instruments
- Cardiac catheters
- Implants

Sterilization of "Critical Objects"

Steam sterilization Hydrogen peroxide gas plasma Ethylene oxide Ozone Vaporized hydrogen peroxide

Processing "Semicritical" Patient Care Objects

Classification:	Semicritical objects come in contact with mucous membranes or skin that is not intact.
Object:	Free of all microorganisms except high
	numbers of bacterial spores.
Level germicidal a	ction: Kills all microorganisms except high
	numbers of bacterial spores.
Examples:	Respiratory therapy and anesthesia
	equipment, GI endoscopes, endocavitary
	probes, etc.
Method:	High-level disinfection

Semicritical Items

- Endoscopes
- Respiratory therapy equipment
- Anesthesia equipment
- Endocavitary probes
- ullet Tonometers
- Diaphragm fitting rings

High-Level Disinfection of "Semicritical Objects"

Exposure Time > 8m-45m (US), 20°C

Commence		
Glutaraldehyde	> 2.0%	
Ortho-phthalaldehyde	0.55%	
Hydrogen peroxide*	7.5%	
Hydrogen peroxide and peracetic acid*	1.0%/0.08%	
Hydrogen peroxide and peracetic acid*	7.5%/0.23%	
Hypochlorite (free chlorine)*	650-675 ppm	
Accelerated hydrogen peroxide	2.0%	
Glut and isopropanol	3.4%/26%	
Glut and phenol/phenate**	1.21%/1.93%	

Classification:	Noncritical objects will not come in contact
	with mucous membranes or skin that is not intact.
Object:	Can be expected to be contaminated with some microorganisms.
Level germicidal a	ction: Kill vegetative bacteria, fungi and lipid viruses.
Examples:	Bedpans; crutches; bed rails; EKG leads; bedside tables; walls, floors and furniture.
Method:	Low-level disinfection (or detergent for housekeeping surfaces)

Processing "Noncritical"

Sterilization of "Critical Objects"

Steam sterilization Hydrogen peroxide gas plasma Ethylene oxide Ozone Vaporized hydrogen peroxide

Cleaning

- Critical and semicritical items must be cleaned using water with detergents or enzymatic cleaners before processing.
- Cleaning reduces the bioburden and removes foreign material (organic residue and inorganic salts) that interferes with the sterilization process.
- Cleaning and decontamination should be done as soon as possible after the items have been used as soiled materials become dried onto the instruments.

Cleaning

- Mechanical cleaning machines-automated equipment may increase productivity, improve cleaning effectiveness, and decrease worker exposure
 - Utensil washer-sanitizer
 - Ultrasonic cleaner
 - Washer sterilizer
 - DishwasherWasher disinfector
- Manual

Washer/Disinfector

Rutala WA, Gergen MF, Weber DJ, Unpublished results, 2007

- Five Chambers
 - Pre-wash: water/enzymatic is circulated over the load for 1 min
 - Wash: detergent wash solution (150°F) is sprayed over load for 4 min
 Ultrasonic cleaning: basket is lowered into ultrasonic cleaning tank with
 - Ourasonic cleaning, basker is lowered into diffasonic cleaning tank with detergent for 4 min
 - Thermal and lubricant rinse: hot water (180°F) is sprayed over load for 1 min; instrument milk lubricant is added to the water and is sprayed over the load
 - Drying: blower starts for 4 min and temperature in drying chamber 180F

Washer/Disinfector Removal/Inactivation of Inoculum (Exposed) on Instruments					
WD Conditions	Organism	Inoculum	Log Reduction	Positives	
Routine	MRSA	2.6x10 ⁷	Complete	0/8	
Routine	VRE	2.6x10 ⁷	Complete	0/8	
Routine	P aeruginosa	2.1x10 ⁷	Complete	0/8	
Routine	M terrae	1.4x10 ⁸	7.8	2/8	
Routine	GS spores	5.3x10 ⁶	4.8	11/14	
No Enz/Det	VRE	2.5x10 ⁷	Complete	0/10	
No Enz/Det	GS spores	8.3x10 ⁶	5.5	8/10	

Washer/disinfectors are very effective in removing/inactivating microorganisms from instruments

Sterilization

The complete elimination or destruction of all forms of microbial life and is accomplished in healthcare facilities by either physical or chemical processes

Steam Sterilization

- Advantages
 - Non-toxicCycle easy to control and monitor
 - Inexpensive
- Rapidly microbicidal
- Least affected by organic/inorganic soils
- Rapid cycle time
 Repetrates modil
- Penetrates medical packing, device lumens
 Disadvantages
- Deleterious for heat labile instruments
 Potential for burns

Newer Trends in Sterilization of Patient Equipment

- Alternatives to ETO-CFC ETO-CO₂, ETO-HCFC, 100% ETO
- Newer Low Temperature Sterilization Technology Hydrogen Peroxide Gas Plasma Vaporized hydrogen peroxide Ozone

Ethylene Oxide (ETO)

Advantages

- Very effective at killing microorganisms
- Penetrates medical packaging and many plastics
- Compatible with most medical materialsCycle easy to control and monitor
- Disadvantages
 - Some states (CA, NY, TX) require ETO emission reduction of 90-99.9%
 - CFC (inert gas that eliminates explosion hazard) banned after 1995
 - Potential hazard to patients and staff
 - Lengthy cycle/aeration time

Hydrogen Peroxide Gas Plasma Sterilization

Advantages

- Safe for the environment and health care worker; it leaves no toxic residuals
- Fast cycle time is 28-52 min and no aeration necessary
- Used for heat and moisture sensitive items since process temperature 50°C
- Simple to operate, install, and monitor
- Compatible with most medical devices

Hydrogen Peroxide Gas Plasma Sterilization

Disadvantages

- Cellulose (paper), linens and liquids cannot be processed
- Sterilization chamber is small, about 3.5ft³ to 7.3ft³
- Endoscopes or medical devices restrictions based on lumen internal diameter and length (see manufacturer's recommendations); expanded claims with NX
- Requires synthetic packaging (polypropylene) and special container tray

Ozone

Advantages

- Used for moisture and heat-sensitive items
- Ozone generated from oxygen and water (oxidizing)
- No aeration because no toxic by-products
- FDA cleared for metal and plastic surgical instruments, including some instruments with lumens
- Disadvantages
 - Sterilization chamber small, 4ft³
 - Limited use (material compatibility/penetrability/organic material resistance?) and limited microbicidal efficacy data

V-PRO[™]1, Vaporized Hydrogen Peroxide

Advantages

- Safe for the environment and health care worker; it leaves no toxic residuals
 Fast cycle time is 55 min and no aeration necessary
- Used for heat and moisture sensitive items (metal and nonmetal devices)
- Disadvantages
 - Sterilization chamber is small, about 4.8ft³
 - Medical devices restrictions based on lumen internal diameter and length-see manufacturer's recommendations, e.g., SS lumen 1mm diameter, 125mm length
 - Not used for liquid, linens, powders, or any cellulose materials
 - Requires synthetic packaging (polypropylene)
 - Limited use and limited comparative microbicidal efficacy data

Conclusions Sterilization

- All sterilization processes effective in killing spores
- Cleaning removes salts and proteins and must precede sterilization
- Failure to clean or ensure exposure of microorganisms to sterilant (e.g. connectors) could affect effectiveness of sterilization process

Recommendations Methods of Sterilization

- Steam is preferred for critical items not damaged by heat
- Follow the operating parameters recommended by the manufacturer (times, temperatures, gas conc)
- Use low temperature sterilization technologies for reprocessing critical items damaged by heat
- Aerate surgical and medical items that have been sterilized in the ETO sterilizer

Recommendations Methods of Sterilization

• Dry heat sterilization (e.g., 340F for 60 minutes) can be used to sterilize items (e.g., powders, oils) that can sustain high temperatures

Immediate Use Steam Sterilization Multi-Society from AAMI, AORN, APIC, IAHCSMM-March, 2011

- "Flash Sterilization" an antiquated term that does not describe current cycles used for items not intended to be stored for later use
- Item is not stored or held for a future case or used from one case to another; used for procedure which it sterilized
- Cleaning, decontamination and reprocessing are critical and must be followed
- Should not be used for implants unless no other option
- Cycle parameters determined by the design of the instrument, the characteristics of the load, the sterilizer capability and the packaging (if used)

Packaging

- Once items are cleaned, dried, and inspected, items are wrapped or placed in a rigid container
- Arranged in tray/basket according to guidelines
 Hinged instruments opened
 - Items with removable parts should be disassembled
 - Heavy items positioned not to damage delicate items
- Several choices to maintain sterility of instruments: rigid containers, peel pouched; sterilization wraps

Packaging Sterilization Wraps

- An effective sterilization wrap would:
 - Allow penetration of the sterilant
 - Provide an effective barrier to microbial penetration
 - Maintain the sterility of the processed item after sterilization
 - Puncture resistant and flexible
 - Drapeable and easy to use
- Multiple layers are still common practice due to the rigors of handling

Recommendations Storage of Sterile Items

- Sterile storage area should be well-ventilated area that provides protection against dust, moisture, and temperature and humidity extremes.
- Sterile items should be stored so that packaging is not compromised
- Sterilized items should be labeled with a load number that indicates the sterilizer used, the cycle or load number, the date of sterilization, and the expiration date (if applicable)

Objectives of Monitoring the Sterilization Process

- Assures probability of absence of all living organisms on medical devices being processed
- Detect failures as soon as possible
- Removes medical device involved in failures before patient use

Sterilization Monitoring

Sterilization monitored routinely by combination of physical, chemical, and biological parameters

- Physical cycle time, temperature, pressure
- Chemical heat or chemical sensitive inks that change color when germicidal-related parameters present (Class 1-6)
- Biological Bacillus spores that directly measure sterilization

Biological Monitors

- Steam Geobacillus stearothermophilus
- Dry heat B. atrophaeus (formerly B. subtilis)
- ETO B. atrophaeus
- New low temperature sterilization technologies HP gas plasma (Sterrad) - G. stearothermophilus Ozone-G. stearothermophilus

Recommendations Monitoring of Sterilizers

- Monitor each load with physical and chemical (internal and external) indicators. If the internal indicator is visible, an external indicator is not needed.
- Use biological indicators to monitor effectiveness of sterilizers at least weekly with spores intended for the type of sterilizer (Class 6 Cl not a substitute for BI).
- Use biological indicators for every load containing implantable items and quarantine items, whenever possible, until the biological indicator is negative.

Recommendations Storage of Sterile Items

- Event-related shelf life recognizes that the product remains sterile until an event causes it to become contaminated (e.g., tear, wetness). Packages should be evaluated before use for lose of integrity.
- Time-related shelf life (less common) considers items remain sterile for varying periods depending on the type of material used to wrap the item/tray. Once the expiration date is exceeded the pack should be reprocessed.

ENDOSCOPE REPROCESSING Multi-Society Guideline on Endoscope Reprocessing, 2011

- PRECLEAN-point-of-use remove debris by wiping exterior and aspiration of detergent through air/water and biopsy channels
- CLEAN-mechanically cleaned with water and enzymatic cleaner
 HLD/STERILIZE-immerse scope and perfuse HLD/sterilant through all channels for exposure time (>2% glut at 20m at 20°C). If AER used, review model-specific reprocessing protocols from both the endoscope and AER manufacturer
- RINSE-scope and channels rinsed with sterile water, filtered water, or tap water. Flush channels with alcohol and dry
- or tap water. Flush channels with alcohol and dry
 DRY-use forced air to dry insertion tube and channels
- DRY-use forced air to dry insertion tube and channels
 STORE-hang in vertical position to facilitate drying; stored in a manner to protect from contamination

High-Level Disinfection of "Semicritical Objects"

Exposure Time > 8m-45m (US), 20°C

 Germicide
 Concentration

 Glutaraldehyde
 ≥ 2.0%

 Ortho-phthalaldehyde
 0.55%

 Hydrogen peroxide*
 7.5%

 Hydrogen peroxide and peracetic acid*
 1.0%/0.08%

 Hydrogen peroxide and peracetic acid*
 7.5%/0.23%

 Hyporchlorite (free chlorine)*
 650-675 ppm

 Accelerated hydrogen peroxide
 2.0%

 Glut and isopropanol
 3.4%/26%

 Glut and isopropanol
 1.21%/1.93%

 *May cause cosmetic and functional damage; **efficacy not verified

way cause cosmetic and functional damage, enicacy not verifie

Surface Disinfection Noncritical Patient Care-CDC, 2008

• Disinfecting Noncritical Patient-Care Items

- Process noncritical patient-care equipment with a EPAregistered disinfectant at the proper use dilution and a contact time of at least 1 min. Category IB
- Ensure that the frequency for disinfecting noncritical patientcare surfaces be done minimally when visibly soiled and on a regular basis (such as after each patient use or once daily or once weekly). Category IB

Surface Disinfection Environmental Surfaces-CDC, 2008

• Disinfecting Environmental Surfaces in HCF

- Disinfect (or clean) housekeeping surfaces (e.g., floors, tabletops) on a regular basis (e.g., daily, three times per week), when spills occur, and when these surfaces are visibly soiled. Category IB
- Use disinfectant for housekeeping purposes where: uncertainty exists as to the nature of the soil on the surfaces (blood vs dirt); or where uncertainty exists regarding the presence of multi-drug resistant organisms on such surfaces. Category II

A Webber Training Teleclass www.webbertraining.com

Risk of Acquiring MRSA, VRE, and *C. difficile* from Prior Room Occupants

- Admission to a room previously occupied by an MRSA-positive patient or VRE-positive patient significantly increased the odds of acquisition for MRSA and VRE (although this route is a minor contributor to overall transmission). Huang et al. Arch Intern Med 2006;166:1945.
- Prior environmental contamination, whether measured via environmental cultures or prior room occupancy by VREcolonized patients, increases the risk of acquisition of VRE. Drees et al. Clin Infect Dis 2008;46:678.
- Prior room occupant with CDAD is a significant risk for CDAD acquisition. Shaughnessy et al. ICHE 2011:32:201

New Approaches to Room Decontamination

Summary

UV and HP decontamination units have been demonstrated to be effective against various pathogens (including *C. difficile* spores) and offer an option for room decontamination

Disinfection and Sterilization

- Provide overview of disinfection and sterilization recommendations
 - Indications and methods for sterilization, high-level disinfection and low-level disinfection
 - Cleaning of patient-care devices
 - Sterilization practices
 - Disinfection practices

Summary

- Critical and semicritical items must be cleaned using water with detergents or enzymatic cleaners before processing.
- Disinfection and sterilization guidelines must be followed to prevent patient exposure to pathogens that may lead to infection
- Contaminated surfaces contribute to pathogen transmission and health care facilities may need to introduce control measures to ensure all surfaces are completely cleaned daily and terminally

Thank you

References

- Rutala WA, Weber DJ. CJD: Recommendations for disinfection and sterilization. Clin Infect Dis 2001;32:1348
- Rutala WA, Weber DJ. Disinfection and sterilization: What clinicians need to know. Clin Infect Dis 2004;39:702
- Rutala WA, Weber DJ, HICPAC. CDC guideline for disinfection and sterilization in healthcare facilities. November 2008. www.cdc.gov
- Rutala WA. APIC guideline for selection and use of disinfectants. Am J Infect Control 1996;24:313

February 8 Behavioural Change in Infection Prevention and Control, Prof. Andreas Voss March 7 Achievements in Improving Injection

Safety Worldwide, Dr. Selma Khamassi April 17 Implementing Change: The Technical & Socio-Adaptive Aspects of Preventing Catheter-Associated Urinary Tract Infection, Prof. Sanjay Saint

Infection, Prof. Sanjay Saint May 7 Keeping the Hand Hygiene Agenda Alive:

Keeping the Hand Hygiene Agenda Alive: Acting on Data and the influence of Global Surveys, Prof. Didier Pittet June 6

Economic Impact of Healthcare-Associated Infections in Low and Middle Income Countries, Dr. A. Nevzat Yalcin

July 11 Patient Empowerment in Infection Control, Claire Kilpatrick 2,012,WHO Teleclasses Clean Care is Safer Care August 8 Processing Medical Devices in Settings with Limited Resources, Dr. Nizam Damani

September 5 Successes and Challenges in Developing and Implementing Bundles in Infection Prevention, Prof. Don Goldmann

October 2 The Role of Education in Low and Middle Income Countries, Prof. Shahee Mehtar

November 7 Measuring Impact: Key to Infection Control Scale-Up and Sustainability, Prof. Jacqui Reilly

December 5 New Developments in Infection Control for Renal Dialysis, Prof. W.H. Seto