

Frequency and impact of SSIs in the USA

- About 30 million operations annually
- SSIs are the 2nd to 3rd most common nosocomial infection
- Overall SSI rate 2.6% (CDC, 1999)
- Each SSI increases hospital stay by ~7-10 days & costs USD 2-3000 extra
- Overall costs of SSIs > USD 2 bn p.a.

Source: Mangram AJ et al. Guideline for prevention of surgical site infection ('CDC guideline'). Infect Control Hosp Epidemiol 20: 247-78; 1999

Surgery in the 20th Century	AMERICAN COLLEGE OF SURGEONS Committee on Control of Surgical Infections of the Committee on Pre- and Postoperative Care
 Listerian principles further developed into 'aseptic surgery' by German, then US surgeons 	MANUAL ON Control of Infection in Surgical
 Many achievements: sterile field, surgical attire, face masks, etc. 	
 Prominent surgeon in US: William Altemeier (Cincinnati) 	Editorial Subcommittee William A. Alterneier, M.D., Симпими John F. Burke, M.D. Basil A. Pruitt, Jr., M.D.
Edition from 1984 (earlier edition 1976)	William R. Sandusky, M.D.

Causes and risk factors of SSIs · SSIs are complex multifactorial events ! Old age Severe underlying illness Obesity Malnutrition · Many contributing & preventing factors Difficult or impossible to pinpoint cause of a given • Diabetes mellitus individual SSI · In 'clean' surgery, patient skin is major source · In surgery - through mucous membranes • - intestinal surgery - contaminated/infected surgery ... other sources assume a greater role Prolonged pre-op. stay Shaving the skin Inadequate antib. prophylaxis Staph. aureus (& MRSA) carriage Dose of bacterial contamination × virulence _ Risk of surgical Resistance of the host patient site infection Mangram et al. 1999, citing: Cruse, 1992; Altern oier 1965

Risk factors for SSI

•

•

Host Factors

- Smoking Immunocompromising diseases or therapies Presence of other infections
- Skin diseases

Preoperative Factors

- Remote Infection

Surgical Factors

- Inadequate skin antisepsis
- Emergency procedure
- Surgical volume
- Prosthetic implants
- . Prolonged procedure
- Use of drains
- Poor surgical technique
- Unexpected contamination Lack of surveillance

Environmental Factors

- Inadequate attire
- Excessive activity • .
 - Inadequate ventilation
- Slide courtesy of A. Widmer, Base

Inadequately sterilised items

	ciety of Anesthesiologists: Physical Status Classificat and the risk of SSIs
Code	Patient's Preoperative Physical Status
1	Normally healthy patient
2	Patient with mild systemic disease
3	Patient with severe systemic disease that is not incapacitating
4	Patient with an incapacitating systemic disease that is a constant threat to life
5	Moribund patient who is not expected to survive for 24 hours with or without operation
*Reference	406. above is the version of the ASA Physical Status Classification
System tha the NNIS F gists has r	take of the relation of the Aorh register discover based in a super- tives current at the time of development of, and still is used in, itsk Index. Meanwhile, the American Society of Anesthesiolo- evised their classification system; the most recent version is http://www.asahq.org/profin/o/physical status.html.

Diagnosis of SSIs

- Purulent drainage from wound +/- dehiscence
- Organisms isolated from aseptically obtained fluid or tissue
- Pain, swelling, redness, heat +/- fever
- Diagnosis by surgeon or attending physician
- After follow-up for 30 days, if no implant
 1 year with implant
 - 'CDC Criteria': Mangram et al. 1999 and Horan TC et al. Infect Control Hosp Epidemiol 1992 (Strongly abbreviated version)

Pathoge	ns involv	ved i	n SS	SIS
Percentage (%) of	Pathogen	1986-1989	1990-1996	
pathogens of SSIs	Staphylococcus aureus	17	20	
isolated in the US	Coagneg. staph.	12	14	
	Enterococcus spp.	13	12	
National Nosocomial	Escherichia coli	10	8	
Infections Surveillance	Pseudomonas aeruginosa	8	8	
System,	Enterobacter spp.	8	7	
1986-89 & 1990-92	Proteus mirabilis	4	3	
1900-09 & 1990-92	Klebsiella pneumoniae	3	3	
Management at al 1000	Other Streptococcus spp.	3	3	
Mangram et al. 1999	Candida albicans	2	3	
Staph. aureu • Gastrointest • Obstetric & g	nopaedic, neurosi us & coagneg. s inal: Gram-negati gynaecologic: Gra cci, enterococci co	taph con ves & ar am-nega	nmon naerobes	s common

Class	Surgical Procedure	Approx. Infection Rate
I Clean	Uninfected wound; gastrointestinal tract & other body cavities not entered; wound primarily closed	1-2%
II Clean- contaminated	Respiratory, gastrointestinal, genital or urinary tract entered under controlled conditions w'out unusual contamination	5-10%
III Contaminated	Fresh, traumatic wounds; spillage from GI tract; acute, non-purulent inflammation	10-20%
American Colle	ege of Surgeons & Mangram et al. 1999 ('CDC)	Guideline')
dV Dirty-infected	Gross peritoneal soiling; perforated	>20%

Surgical site classification

Wound classification	Cruse & Foord (n=63,000) 1970-75	SENIC (n=59,000) 1975-76	Olson & Lee (n=36,500) 1980-85	Culver et al (n=85,000) 1987-90
Clean	1,5	2,9	1,3	2,1
Clean- contaminated	7,7	3,9	2,4	3,3
Contaminated	15,2	8,5	7,9	6,4
Dirty (established infection)	40,0	12,6	-	7,1
Risk of	f infection inc	reases fron	n Class I to	IV
	est relative im es III & IV (sur			,
)	Slide cou	rtesy of A. Widmer,	Basel	

Prevention of SSIs: The 'Race Car Analogy'

Need to optimize: • Carburetors

- Tyres, brakes
- Aerodynamics
- Fuel/Weight
- Etc., etc.

For SSI Prevention:

- · Many factors need to be optimized
- · Often, relative contribution of one factor is not known
- Gray zone & discussion: which is important?
- Part of modern 'bundle & checklist' approaches
 20

Recent clinical trial

Darouiche RO et al. N Engl J Med. 362: 18-26; 2010

- Setting: clean-contaminated surgery in 6 hospitals
- One alcohol-containing vs. one aqueous prep:
- (1) 70% isopropanol plus 2% CHG; (2) Aqueous PVP-ISignificantly lower infection rates with (1) than (2),

including deep incisional but not org/sp SSIs

Type of Infection	Chlorhexidine– Alcohol (N=409)	Povidone–Iodine (N = 440)	Relative Risk (95% CI)*	P Value†
	no.	(%)		
Any surgical-site infection	39 (9.5)	71 (16.1)	0.59 (0.41-0.85)	0.004
Superficial incisional infection	17 (4.2)	38 (8.6)	0.48 (0.28-0.84)	0.008
Deep incisional infection	4 (1.0)	13 (3.0)	0.33 (0.11-1.01)	0.05
Organ-space infection	18 (4.4)	20 (4.5)	0.97 (0.52-1.80)	>0.99
Sepsis from surgical-site infection	11 (2.7)	19 (4.3)	0.62 (0.30-1.29)	0.26

Another clinical study

Swenson BR et al. Infect Control Hosp Epidemiol. 30: 964-71; 2009

- Setting: general surgery
- Three alcohol-containing preps:
 (1) Aqueous PVP-I alternating w. 70% isopropanol
 (2) 70% isopropanol plus 2% CHG
 (3) Iodine povacrylex in isopropanol
- Significantly lower infection rates with (1) & (3) but no difference in deep incisional and org/sp SSIs

Variable	No. of SSIs	No. of surgical procedures	Povidone-iodine (n = 1,514 procedures)	Chlorhexidine (n = 827) procedures)	Iodine povacrylex (n = 794 procedures)	P
SSIs						
All ^b	178		72 (4.8)	68 (8.2)	38 (4.8)	.00
Superficial	120		49 (3.2)	45 (5.4)	26 (3.3)	.01
Deep	11		6 (0.4)	4 (0.5)	1 (0.1)	.49
Organ/space	49		18 (1.2)	19 (2.3)	12 (1.5)	.12

Other Measures to Prevent SSIs

- Surveillance program with surgeon feedback

 Incl. post-discharge surveillance

 Screening for *Staph. aureus* carriage & decolonization before critical elective surgery
- Recent study: Bode LGM et al. NEJM 362; 9-17; 2010
 Preoperative antiseptic showering (e.g. day before)
- Unresolved
 Preoperative hair removal
- If possible, no hair removal, if necessary, clipping is best
- Operating room ventilation & personnel movement

 Recent discussion whether laminar flow is necessary or not
- Operating room attire and face masks – Discussion of face masks in anesthetists
- Avoidance of intraop. hypothermia & hyperglycemia
- Supplemental oxygen (e.g. 80%) respiration
 Still controversial
- Listing is incomplete; several other measures

What is wrong?

- Most (but not all) chlorhexidine preparations for skin antisepsis are mixtures of alcohol plus chlorhexidine
- Alcohols are about 10 times (~1 log) more rapid and effective than chlorhexidine (multiple tests since 1970s)
- Combination of alcohol plus CHG or PVP-I is indeed useful because of immediate plus sustained effect
- · In the Systematic Reviews:

37

- Majority of studies used (a) Alcohol plus CHG vs. (b) Povidonelodine alone (i.e. 2 active ingredients vs. 1)
- Only few studies of CHG alone vs. PVP-I alone or alc. CHG vs. alc. PVP-I; they are inconclusive or methodologically flawed - Conclusions are made solely for CHG, alcohol is ignored
- Assessment: Reviews and conclusions are seriously flawed by way of ignoring the alcohol component

Addressing the 'Chlorhexidine Myth' British Journal of Surgery Letters (web & print) by: Letter's (WED & print) by: (1) Nesseier N. Launy Y. Malidant Y Ponthaliau University Hospital, Rennes, France (2) Malwald M. Windmar AF, Rotter ML (2) Malwald M. Windmar AF, Rotter ML (2) Malwald M. Windmar AF, Rotter ML (2) Kampf, 4, Kramer A Bode Chemie, Hamburg, Germany: University of Teshsud, Germany: University of Teshsud, Germany: (4) Turza Campbell K. Swenson BK, Sawyer RG University of Unita, Chardtesten, USA Lack of Evidence for Attributing Chlorhexidine as the Main Active Ingredient in Skin Antiseptics Preventing Surgical Site Infections nin Rotter ML iol 2011;32(4):404-405 o Eniden AFTER DISINFECTION (2004) Matthias Maiwald, MD, PhD;¹ Andreas F. Widmer, MD, MS;² Manfred L. Rotter, MD, Dip Bact³ Conclusions: This myth can put patients at The Importance of Isopropyl Alcohol in Skin Preparation Solutions Lin M. Riccio, MD; ¹Brian R. Swenson, MD, MS;¹² Robert G. Sawyer, MD¹³ Infect Control Hosp Epidemiol 2011;32(4):405-406 serious risk of infections · It may take years to reverse it 38

Flammable Skin Antiseptics and Risk of Surgical Fires

- · Concern about fire risk in operating rooms when using alcohol skin antisepsis (several publications)
- · However, OR fires are rare
- In USA: ~ 100 fires p.a., 10 severe, 1-2 deaths (Bruley ME. Qual Saf Health Care 2004)
- · Majority due to anaesthetic gases & flammable items around airways
- · Minority due to skin preps; these almost always due to inadvertent misuse: pooling, wetting of drapes

Some Facts and Calculations (US Data) • In US, 30 million operations p.a. • 2.5% SSIs (1/3 deep, severe) • Result --> 249,000 deep organ/space SSIs • If skin antisepsis reduces SSI rate 2.5% --> 2.4% --> 240,000 deep SSIs --> 9,000 deep SSIs avoided • Contrast: 10 severe surgical fires p.a. · Conclusions: - Fire risk is real, but avoidable w. good practices - Benefit in SSI prevention outweighs risks Bruley ME. Qual. Saf. Health Care 2004; 13: 467–71. Maiwald M et al. (Letter). ANZ J Surg 2006; 76: 422-423

Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com

42

	COMING SOON
14 Apr. 11	Healthcare-Associated Infection Prevention Bundles – Preventing The Preventable Speaker: Dr. William Jarvis, Jason & Jarvis Associates
28 Apr. 11	(Free British Teleclass – A. Denver Russell Memorial Teleclass) The Spaulding Classification for Disinfection and Sterilization Is it Time to Reconsider? Speaker: Dr. Gerry McDonnell, Steris Inc.
05 May 11	(Free WHO Teleclass) The Importance of Worldwide Hand Hygiene Events and Activities Speaker: Prof. Didler Pittet, University of Geneva Hospitals Sponsored by: WHO Patient Safety Challenge (www.who.int/gpsc/en)
09 May 11	(Free South Pacific Teleclass) Voices of the Australian Infection Control Association Speaker: AICA Board
12 May 11	The Faecal Quandary – Bedpan Management in a Modern Age Speaker: Gertie van Knippenberg-Gordebeke, The Netherlands Sponsored by: MEIKO Maschinenbau GmbH & CO.KG
Ň	www.webbertraining.com/schedulep1.php