

Histo	ory of Skin A	Antisepsis
If CAULTA BLUESSITN, A. B. BUTT, Annual Physics, Rever 3 Holds, M. B. B. BURD, VILLE, K. P. S. M. BURD, VILLE, K. P. S. M. S. BURD, VILLE, K. P. S. M. S. BURD, VILLE, M. S. M. S. BURD, M. S. M. S. M. S. BURD, M. S. M. S. M. S. BURD, M. S. M. S. M	UBDICAL JOINNAL (Mr. 1 three, for and tan minutes. If formal minimary setting of the threads with vis- man contact. Existin was followed a finit, "who employed stypes and the setting setting of the setting of the setting of the mean contact. Existing was followed a finit, "who employed spectra for the setting of the setting of the setting and the setting of the setting of the setting of the setting of the setting about a contact and the setting of the setting of the setting of the setting about a setting of the setting of the setting of the setting of the set of the setting of t	1903 1903 1903 1903 1939 1939 Arch Surg. 1939;38(3):528-542. FITYL ALCOHOL AS A GERMICIDE PHILIP B. PRICE, M.D.
Charles Harrington, M.D., and Harold The Germicidal Action of Alcohol. Boston Med Surg J 1903; 148: 548-55	52. May 21, 1903.	Alcohol is probably the most popular of all cutaneous disinfectants, is generally used in every country, not only in dressing wounds and preoperative preparation of the surgeon's hands and the field of eration, but for a multitude of minor procedures, such as vascinations, podermic injections and panetures of the skin for blood counts easons for its popularity are obvious: It is relatively cheap and easy
 Hand and skin antis prevalent in early 19 Seminal work by Pri ~1930s to 1950s 	sepsis already 900s	obtain, it is pleasant to use and it "weats" the skin efficiently. An obsch-asked pledger an wipe away a contrain amount of grease and strength and the strength operation and the like. The strength operation of the strength operation of the block shown alcohar to be but wavely hatericidal, and the prevalu- dition of present day writers is that walterer efficiency it muy hava a cataneous disinfectant, sortied on over a period of several as study of distinctions, contrained on over a period of several area, has led me to a different point of view. Using organizing and trains and the strength activity. Thus we contexploy the strength operation train narrow limits of concentration, to be at trangth operational works which are the strength operation of the strength operation.

	Brief History of Antiseptic Testing
•	Epstein 1897) tested antiseptics for hands and skin 1930s to 50s: Price (USA) published seminal papers; precursors to US FDA/ASTM test methods 1950s to 70s: Lowbury & Lilly (UK) published seminal work 1958: Germany published 1st national set of test methods 1970s: US FDA tentative final monographs (TFMs) published 1970s to 80s: Various national sets of test requirements in European countries generated
4	Note: Listing is not comprehensive

Evidence-Based Medicine (EBM)

- Branch of medicine that makes conscientious, explicit and judicious use of current best evidence in making decisions
- Measure: real clinical outcomes after different treatment
- Stages of evaluation:
 - (1) Clinical trials: randomized clinical trial (RCT) is best
 - (2) Systematic reviews
 - (3) Meta-analyses (mathematical calculation)
 - (4) Evidence-based clinical practice guidelines

Hosted by Martin Kiernan martin@webbertraining.com

Skin Antisepsis: Modern Relevance

• Skin antisepsis is now a firmly established measure to prevent infections in healthcare

A few main applications:

- (1) Before blood culture collection
 - To prevent blood culture contamination
- (2) Before vascular catheter insertion
 - To prevent catheter colonisation and bloodstream infection
- (3) Before surgery (surgical 'skin prep')
 To prevent surgical site infections
- · Plus several more applications

Antimicrobial Spectrum and Activity of Skin Antiseptics

Larson EL. Guideline, topical antimicrobial agents. AJIC 1988; 16: 253-66 Mangram AJ et al. ICHE 1999; 20: 250-78 ('CDC surgical guideline')

	Mechanism of	Gram- Positive	Gram- Negative				Rapidity	Residual		
Agent	Action	Bacteria	Bacteria	Mtb	Fungi	Virus	of Action	Activity	Toxicity	Uses
Alcohol	Denature proteins	Е	Е	G	G	G	Most rapid	None	Drying, volatile	SP, SS
Chlorhexidine	Disrupt cell membrane	Е	G	Р	F	G	Intermediate	E	Ototoxicity, keratitis	SP, SS
Iodine/Iodophors	Oxidation/substitution by free iodine	Е	G	G	G	G	Intermediate	Minimal	Absorption from skin with	SP, S

- Alcohols are generally the most rapid-acting & most effective skin antiseptics (best activity at ~70-90%)
- Combination of alcohol plus chlorhexidine (CHG) or iodine (PVI) provides advantages: added effects, persistency
- Alcohol is <u>unsuitable</u> for mucous membrane antisepsis

Chlorhexidine started to feature in practice recommendations and evidence-based guidelines

Examples:

- A 2007 Clinical and Laboratory Standards Institute (CLSI) guideline on blood cultures
- The 2002 CDC guideline and 2009 draft guideline on intravascular catheters
- The 2010 Australian NHMRC Inf. Cont. Guidelines (for surgical skin preparation)
- A 2011 public call for revision of the UK NICE Guidelines (surgical skin preparation)
- · Numerous keynote presentations at conferences

Questions posed:

- What is the factual evidence for
 (a) chlorhexidine alone, or
 (b) its combinations, in skin antisepsis?
- How common is the attribution of study outcomes from a combination of antiseptics to chlorhexidine alone?
- Could this phenomenon have skewed evidence-based guidelines unjustly in favor of chlorhexidine?

Systematic Review Strategy

Exhaustive search for primary & secondary literature:

- (1) Clinical Trials, (2) Systematic Reviews
- Chlorhexidine versus competitors in:
 - (A) Skin antisepsis for blood cultures
 - (B) Intravascular catheter insertion
 - (C) Surgical skin preparation
 - -- Classical skin antisepsis assessed, not antiseptic body washing or mucous membrane antisepsis

Criteria for literature assessment:

- (1) Attribution of study outcomes from ALC+CHG to CHG alone?
- (2) Factual evidence for CHG

Non-exhaustive review of tertiary literature

	Reference	Study design	Antiseptics	Outcomes	Attribution		
1	Mimoz et al. 1999	RCT	A: CHG 0.5% + ALC (?%) B: PVI ag. 10%	Favouring CHG + ALC	Incorrect	Х	\odot
2	Trautner et al. 2002	RCT	A: CHG 2% + IPA 70% B: IPA 70% seg. IT	Insignificant	Correct	\checkmark	\odot
3	Barenfanger et al. 2004	Seq. design	A: CHG 2% + IPA 70% B: IT (composition?)	Insignificant	Incorrect	X	\odot
4	Madeo et al. 2008	Retrosp.	A: CHG 2% + IPA 70% B: Unknown	Favouring CHG + ALC	Correct	\checkmark	\odot
5	McLellan et al. 2008	Seq. design	A: CHG 2% + IPA 70% B: IPA 70%	Insignificant	Correct	\checkmark	\odot
6	Stonecypher 2008	Alt. months	A: CHG 2% + IPA 70% B: PVI aq. 10%	Favouring CHG + ALC	Incorrect	Х	\odot
7	Suwanpimolkul et al. 2008	RCT	A: CHG 0.5% + ETH 70% B: PVI aq. 10%	Favouring CHG + ALC	Correct	\checkmark	\odot
8	Tepus et al. 2008	Retrosp.	A: CHG 2% + IPA 70% B: IPA 70% seq. IT	Favouring CHG + ALC	Intermediate	\sim	\odot
9	Marlowe et al. 2010	Retrosp.	A: CHG 3.15% + IPA 70% B: PVI aq. 10%	Favouring CHG + ALC	Incorrect	Х	\odot
10	Washer et al. 2010	RCT	A: CHG 2% + IPA 70% B: IPA 70% seq. PVI 10% C: IPA 70% seq. IT	Insignificant	Correct	\checkmark	\odot
11	Malani et al. 2007	Syst. Rev.	2 CHG trials	No clear evidence	Correct	\checkmark	\odot
12	Caldeira et al. 2011	Syst. Rev.	3 CHG trials	Complex	Correct	\checkmark	\odot
	T, randomized clinical , isopropanol; IT, iodin		ntial; Alt., alternative; CHG, ch	orhexidine; ALC,	alcohol; ETH, et	thanol;	

	P	AI	coh	01 \	1013			
	CHG +		PV			Risk Ratio		Ratio
Study or Subgroup Mimoz 1999		10ta		s lota 4 102		t M-H, Fixed, 95% 0.41 (0.22. 0.7		ed, 95% Cl
Suwanpimolkul 2008		101		4 102 4 107				
Total (95% CI)		208	7	210	0 100.05	6 0.45 [0.32, 0.6	3] 🔶	
Total events	48	J	10	8				
Heterogeneity: Chi ² =	0.10 df = 1	1 (P - 1)						
Toot for everall effect				0.20			0.1 0.2 0.5	1 2 5 10
Test for overall effect	Z = 4.72 (P	P < 0.0	0001)			us lodin	Favours CHG + ALC	Favours PVI aq.
	z= 4.72 (P plus	P < 0.0	coh	olv	/ers		Favours CHG + ALC	plus Ald
hexidine	Z = 4.72 (P plus CHG + AL	P < 0.0	coh	ol v		Risk Ratio	Favours CHG + ALC	plus Ale
hexidine Study or Subgroup	Z = 4.72 (P plus CHG + AL Events T	Al	CON CON	ol ۱ ۱۳	Weight I	Risk Ratio M-H, Fixed, 95% Cl	Favours CHG + ALC e Tincture Risk R M-H, Fixed	plus Ale
thexidine	Z = 4.72 (P plus CHG + AL Events T 1	P < 0.01	CON ALC seq	Ol V .IT Total 215	Weight 1 8.5%	Risk Ratio M-H, Fixed, 95% Cl 0.33 (0.03, 3.18)	Favours CHG + ALC e Tincture Risk R M-H, Fixed	plus Ale
hexidine	Z = 4.72 (P plus CHG + AL Events T	P < 0.01	CON ALC seq	Ol V .IT Total 215	Weight I	Risk Ratio M-H, Fixed, 95% Cl	Favours CHG + ALC e Tincture Risk R M-H, Fixed	plus Ale
hexidine Study or Subgroup Trautner 2002	Z = 4.72 (P plus CHG + AL Events T 1 41 4	P < 0.01	CON ALC seq	OI \ .IT 215 4198	Weight 1 8.5%	Risk Ratio M-H, Fixed, 95% Cl 0.33 (0.03, 3.18)	Favours CHG + ALC e Tincture Risk R M-H, Fixed	plus Ale
tudy or Subgroup Trautner 2002 Washer 2010	Z = 4.72 (P plus CHG + AL Events T 1 41 4	P < 0.01	CON ALC seq	OI \ .IT 215 4198	Weight 1 8.5% 91.5%	Risk Ratio M-H, Fixed, 95% Cl 0.33 (0.03, 3.18) 1.24 (0.78, 1.97)	Favours CHG + ALC e Tincture Risk R M-H, Fixed	plus Ale
thexidine Study or Subgroup Trauther 2002 Washer 2010 Total (95% CI)	Z = 4.72 (P plus <u>CHG + AL</u> <u>Events T</u> 1 41 4 42 1.26, df = 1	P < 0.01	0001) COh ALC seq Events 3 32 35 26); I ^a =	Ol \ .IT 215 4198 4413	Weight 1 8.5% 91.5%	Risk Ratio M-H, Fixed, 95% CI 0.33 (0.03, 3.18) 1.24 (0.78, 1.97) 1.17 (0.75, 1.82)	Favours CHG + ALC e Tincture Risk R M-H, Fixed	plus Ale

Blood Culture Summary

- (1) No evidence that CHG alone is effective
- (2) Excellent evidence for CHG+ALC vs. aqueous PVI
- (3) CHG+ALC vs. IT+ALC vs. PVI+ALC unresolved
- (4) Caldeira et al. 2011 Syst. Rev.: ALC alone may be sufficient

-	Reference		Antiseptics	Outcomes	Attribution	
1		Study design				
1	Maki et al. 1991	RCT	A: CHG aq. 2% B: PVI aq. 10% C: IPA 70%	Favouring CHG aq (col.)	Not applicable	N.A.
2	Sheehan et al. 1993	RCT	A: CHG aq. 2% B: PVI aq. 10%	Favouring CHG aq (col.)	Not applicable	N.A.
3	Garland et al. 1995	Seq. study	A: CHG 2% + IPA 70% B: PVI aq. 10%	Favouring CHG alc (col.)	Incorrect	X ③
4	Meffre et al. 1996	RCT	A: CHG 0.5% + ALC (?%) B: PVI aq. 10%	Favouring CHG alc (col.)	Correct	✓ ☺
5	Mimoz et al. 1996	RCT	A: CHG triple comb. B: PVI ag. 10%	Favouring CHG triple (col.)	Correct	V (i)
6	Legras et al. 1997	RCT	A: CHG 0.5% + ALC (?%) B: PVI aq. 10%	Insignificant	Intermediate	∽ ☺
7	Cobbett & LeBlanc 2000	RCT	A: CHG 0.5% + IPA 70% B: ALC seq. PVI aq. C: PVI aq. seq. ALC	Insignificant	Correct	✓ ☺
8	Humar et al. 2000	RCT	A: CHG 0.5% + ALC (?%) B: PVI aq. 10%	Insignificant	Intermediate	\sim \odot
Э	Maki et al. 2001	RCT	A: CHG 1% + ALC 75% B: PVI ag. 10%	Favouring CHG alc.	Intermediate	∽ ☺
10	Langgartner et al. 2004	RCT	A: CHG 0.5% + IPA 70% B: PVI aq. 10% C: Seq. A & B	Seq. significant (col.)	Correct	✓ ☺
11	Astle & Jensen 2005	RCT	A: CHG 0.5% + IPA 70% B: ExSept	Insignificant	Incorrect	X 🔅

			atheter Stuc	nes (pai	11 2)	
Vas	cular catheters: P	rimary studies a	nd systematic reviews. (Con	tinued)		
	Reference	Study design	Antiseptics	Outcomes	Attribution	
12	Kelly et al. 2005	RCT	A: CHG 2% + IPA 70% B: PVI aq. 10%	Favouring CHG alc.	Incorrect	X 🔅
13	Balamongkhon et al. 2007	Seq. study	A: CHG 2% + ETH 70% B: PVI aq. 10%	Insignificant	Intermediate	∽ ∷
14	Mimoz et al. 2007	RCT	A: CHG triple comb. B: PVI 5% + ETH 70%	Favouring CHG triple (col.)	Intermediate	∽ ∷
15	Small et al. 2008	RCT	A: CHG 2% + IPA 70% B: IPA 70%	Favouring CHG alc. (col.)	Correct	V (i)
16	Vallés et al. 2008	RCT	A: CHG 2% + ALC (?%) B: CHG 2% aq. C: PVI ag. 10%	Favouring CHG alc. (aq. insig.)	Correct	✓ ☺
17	Garland et al. 2009	RCT	A: CHG 0.5% + ALC (?%) B: PVI aq. 10%	Insignificant	Incorrect	X 🔅
18	Ishizuka et al. 2009	Alt. month design	A: CHG aq. 0.05% B: PVI ag. 10%	Insignificant	Not applicable	N.A.
19	Chaiyakunapruk et al. 2002	Syst. Rev.	8 CHG trials	Complex; CHG alc. signif.	Incorrect	X 🔅
20	Rickard and Ray-Barruel 2009	Syst. Rev.	5 CHG trials	Complex; CHG alc. signif. (col.)	Intermediate	\sim
	, randomized clinic I, ethanol; IPA, isop		quential; Alt., alternative; CH	G, chlorhexidine; F	VI, povidone-iodin	e; ALC, alcohol;

Correct 6 (35%), intermediate 6 (35%), incorrect 5 (29%)

atheter c	olor	\i					
	CHG + A		PVI a			Risk Ratio	Risk Ratio
Study or Subgroup						M-H, Randorn, 95% Cl	M-H, Random, 95% Cl
Meffre 1996	9	568	22	549	11.9%	0.40 [0.18, 0.85]	.
Legras 1997	19	179	31	224	14.4%	0.77 [0.45, 1.31]	+
Humar 2000	36	116	27	116	15.5%	1.33 [0.87, 2.04]	. +
Maki 2001	43	422	192		16.6%	0.33 [0.24, 0.44]	
Langgartner 2004	11	45	16	52		0.79 [0.41, 1.53]	
Kelly 2005	4	82	15	82	9.1%	0.27 [0.09, 0.77]	
Valles 2008	34	226	48	194		0.61 [0.41, 0.90]	
Garland 2009	3	24	1	24	3.5%	3.00 [0.34, 26.84]	
Total (95% CI)		1662		1858	100.0%	0.62 [0.39, 0.98]	•
Total events	159		352				
Heterogeneity: Tau# =		= 35.69	9 df= 7				
				(P < 0.	00001); P	= 80%	
Test for overall effect	Z= 2.06 (F	° = 0.04		(P < U.	00001); P	L. L. L.	0.1 0.2 0.5 1 2 5 10 avours CHG + ALC Favours PVIaq.
	elate	ed	blo	od		am infect	avours CHG + ALC Favours PVI aq.
	elate	ed	blo	od		am infect	avours CHO + ALC Favours PVI aq. tion Risk Ratio
atheter-r	elat CHG Events		blo Pl I Even	Od		eam infect	avours CHG + ALC Favours PVI aq. tion Risk Ratio M-H, Fixed, 95% CI
atheter-r	elate		blo PV II Even B	Od /I aq 1ts To 3 5		eam infect Risk Ratio ht M-H, Fixed, 95% C % 0.97 (0.20, 4.77)	avours CHG + ALC Favours PVI aq. tion Risk Ratio M-H, Fixed, 95% CI
Study or Subgroup Meffre 1996 Legras 1997	CHG Events	ALC	blo PV al Even B		Stre	Eam infect Risk Ratio Mt M-H, Fixed, 95% C 0.97 (0.20, 4.77) 0.03 (0.01, 2.45)	tion Risk Ratio
Study or Subgroup Meffre 1996 Legras 1997 Humar 2000	CHG CHG Events	ed	blo P\ I Even B 3	Od /I aq 11s To 3 5 4 2 5 1	Stre 49 6.3 49 8.4 81 10.6	Faminfect Risk Ratio ht M-H, Fixed, 95% C 0.97 [0.20, 4.77] 0.03 [0.01, 2.45] 0.05 [0.20, 2.75]	tion Risk Ratio
Study or Subgroup Meffre 1996 Legras 1997 Humar 2000 Maki 2001	CHG Events	ed) blo P\ 1 Even 8 8 3 2 ;	Od /I aq 1ts To 3 5 4 2 5 1 23 6	Stre 49 6.3 49 8.4 81 10.6 117 38.4	Faminfect Risk Ratio M.H., Fixed, 95% C 0.97 (0.20, 4.77) 0.13 (0.01, 2.45) 0.075 (0.20, 2.75) 0.05 (0.09, 0.73)	tion New Ratio M-H, Fixed, 95% Cl
Study or Subgroup Meffre 1996 Legras 1997 Humar 2000	CHG CHG Events	ed) blo P\ B B 3 2 2	Od /I aq 1ts To 3 5 4 2 5 1 23 6 8	Stre 49 6.3 49 8.4 81 10.6	Cam infect Risk Ratio ht M-H, Fixed, 95% C 0.07 (0.20, 4.77) 0.03 (0.01, 2.45) % 0.25 (0.09, 0.73) % 0.30 (0.22, 0.89) 0.03 (0.02, 0.89)	tion Risk Ratio
Study or Subgroup Meffre 1996 Legras 1997 Humar 2000 Maki 2001 Kelly 2005	CHG CHG Events	ed ALC Tota 56 20 19 42 8 22) blo P\ I Even 8 8 3 2 2 6	Od /I aq 1ts To 3 5 4 2 5 1 23 6 8 9 1	Stre 49 6.3 49 8.4 81 10.6 17 38.4 82 16.4	Cam infect Risk Ratio ht M-H, Fixed, 95% C 0.07 (0.20, 4.77) 0.03 (0.01, 2.45) % 0.25 (0.09, 0.73) % 0.30 (0.22, 0.89) 0.03 (0.02, 0.89)	vooris CHO + ALC Favours PVI aq.
Study or Subgroup Meffre 1996 Legras 1997 Humar 2000 Maki 2001 Kelly 2005 Valles 2008	CHG CHG Events	ed ALC Tota 56 20 19 42 8 22) blo P\ 1 Even 8 8 3 2 2 2 6 4	Od 1 aq 1 ts To 3 5 4 2 5 1 23 6 8 9 1 0	tal Weig 49 6.3 49 8.4 81 10.6 17 38.4 82 16.4 94 19.5	A contract of the second secon	voours CHG + ALC Favours PVI aq. tion Riek Ratio MH, Flood, 59% CI +

Hosted by Martin Kiernan martin@webbertraining.com

Catheter Summary

- (1) Excellent evidence for CHG+ALC vs. aqueous PVI
- (2) CHG aq. performs well vs. PVI aq.;
 but no statistical significance for CR-BSI (consistent with earlier meta-analyses)
- (3) CHG+ALC vs. PVI+ALC unresolved
- (4) Clearly better evidence supporting use of CHG+ALC than CHG aq.

	Reference	Study design	Antiseptics	Outcomes	Attribution		
1	Berry et al. 1982	RCT	A: CHG 0.5% + ALC (?%) B: PVI 10% + ALC (?%)	Favouring CHG + ALC	Incorrect	Х	\odot
2	Brown et al. 1984	RCT	A: CHG 0.5% + IPA 70% B: PVI aq. (?%)	Insignificant	Incorrect	X	٢
3	Ostrander et al. 2005	RCT	A: CHG 2% + IPA 70% B: IPOV + IPA 74% C: Chloroxylenol 3%	Insignificant	Intermediate	\sim	٢
4	Veiga et al. 2008	RCT	A: CHG 0.5% + ALC (?%) B: PVI 10% + ALC (?%)	Insignificant	Incorrect	X	٢
5	Cheng et al. 2009	RCT	A: CHG 2% + IPA 70% B: PVI 10% + IPA 23%	Insignificant	Intermediate	\sim	\bigcirc
6	Paocharoen et al. 2009	RCT	A: CHG 4% + IPA 70% B: PVI aq. (?%)	Insignificant	Incorrect	Х	٢
7	Saltzman et al. 2009	RCT	A: CHG 2% + IPA 70% B: IPOV + IPA 74% C: PVI ag. scrub & paint	Insignificant	Correct	\checkmark	\odot
8	Swenson et al. 2009	Seq. study	A: CHG 2% + IPA 70% B: PVI aq. seq. IPA 70% C: IPOV + IPA 74%	Favouring IOD + ALC	Correct	\checkmark	\odot
9	Darouiche et al. 2010	RCT	A: CHG 4% + IPA 70% B: PVI ag. scrub & paint	Favouring CHG + ALC	Correct	\checkmark	\odot
10	Sistla et al. 2010	RCT	A: CHG 2.5% + ETH 70% B: PVI aq. 10%	Insignificant	Correct	\checkmark	\odot
11	Levin et al. 2011	Retrosp. study	A: CHG aq. 2% seq. IPA B: PVI aq. seq. PVI + ETH	Favouring CHG aq. seq. IPA	Correct	\checkmark	\odot
12	Edwards et al. 2004	Syst. Rev.	1 CHG trial	Inconclusive	Intermediate	\sim	\bigcirc
13	Lee et al. 2010	Syst. Rev.	9 CHG trials (5 CHG + ALC vs. PVI aq.)	Favouring any CHG	Incorrect	Х	٢
14	Noorani et al. 2010	Syst. Rev.	6 CHG trials (3 CHG + ALC vs. PVI aq.)	Favouring any CHG	Incorrect	X	٢

Interim Conclusions

- (1) Excellent evidence for CHG+ALC over PVI aq. in blood cultures, catheters and surgery
- (2) CHG+ALC vs. PVI+ALC inconclusive
- (3) No evidence for CHG alone for blood cultures and surgery (superf. skin)
- (4) Moderate evidence that CHG aq. works for catheters (but less evidence than for CHG+ALC)
- (5) Perceived efficacy of CHG is often based on evidence for efficacy of CHG+ALC combination

Significance of the Findings

- (1) CHG misattribution is scientifically incorrect
- (2) The phenomenon has sizeable proportions
- (3) Unsubstantiated recommendations in clinical practice recommendations and evidence-based guidelines
- (4) Potentially mistaken *a priori* rejection of alternative or competitor antiseptics
- (5) Potential implications for patient safety
- --> Broader implications for evidence-based medicine

- (3) Clinical practice recommendations
- (4) Evidence-based guidelines

(2) Proportions and Impact Size

- · Sizeable proportions:
 - Affects (1) blood cultures, (2) vascular devices, (3) surgery
 - Rates of incorr. attrib. btw. 29% and 43% (plus ambiguous)
 - Surgery more incorrect (43%) than correct (36%) attribution
- Significant impact on how CHG is viewed in Infection Control community
- · Less than 30% of evaluated articles did both:
 - Correctly listed active ingredients of trialed antiseptics, and
 - Correctly attributed outcomes to actual antiseptics tested

(3) Impact on Clinical Guidelines

- Skewing of syst. reviews, practice recommendations and evidence-based guidelines in favor of CHG

 Including US CLSI, CDC, Australian NHMRC, UK NICE
- New 2011 CDC vascular catheter guideline received correction during the public comment phase
- Multiple recommendations at conferences, professional websites, etc.
- See also earlier slides

(4) Impact on Alternative Antiseptics

- Common rejection of alternative antiseptics on the basis that they do not contain CHG
- Perception of efficacy pegged to CHG, not to alcohol
- Works by negative implication: *"It does not contain CHG, therefore it is not supported by evidence"*
- · Multiple examples of such published articles

(5) Patient Safety Aspects

- Caregivers may take recommendations to use "chlorhexidine" literally and use aqueous CHG
- Blood cultures: no direct threat to patients (but indirect impact from contaminated BCs)
- · Catheters: CHG aq. has some protective effect
- · However, Surgery:
 - No evidence that CHG alone is effective
 - Significant differences in SSI rates btw. antiseptics
- Caregivers may be unaware of ALC and use ALCcontaining antiseptics on mucous membranes
- --> Potential impact on patient safety

Possible Origins of the Chlorhexidine Misattribution

Unclear; matter of speculation

- (1) Alcohol may be viewed as a carrier substance or solvent for chlorhexidine
 - Common view: "chlorhexidine in alcohol"
- (2) Alcohol may not be universally viewed as an effective antiseptic

- E.g. CLSI Guideline on Blood Cultures: "cleansing" agent

(3) Word "chlorhexidine" may be used for CHG+ALC combination

- This would be medically/scientifically incorrect

Antiseptic Testing Standards

- (1) US Standards
- Methods described in FDA TFM 1994
- Corresponding methods published by ASTM
- Examples: Suspension test: ASTM E2783
 Test on skin: ASTM E1173
- (2) European Standards
- National protocols partly unified in EN standards
- Examples: Suspension test: EN 13727 Test on skin: national tests

Abbreviations: FDA, Food and Drug Administration; TFM, Tentative Final Monograph; ASTM, American Society for Testing and Material

What are the Benefits and Limitations of Microbiological Testing vs. Clinical Trials?

- (1) Microbiological Testing
- Does NOT measure real clinical endpoints
- · Is a surrogate marker; clinical outcomes may differ
- However, in antiseptic history, results predict outcomes reasonably well (minor inconsistencies)
- · No risk for patients from real infections
- Testing can be very detailed; many compounds can be tested under different conditions
- Manufacturers can "tweak" and optimize antiseptic composition according to test results

What are the Benefits and Limitations of Microbiological Testing vs. Clinical Trials?

(2) Clinical Trials

- Provide information on real clinical outcomes
- Can be analyzed in syst. reviews & meta-analyses
- Strongest evidence to support clinical decisions (!)
- · Limited by numbers of agents to be compared
- Each test requires 100s (1000s?) of real patients
- Risk from real infections; e.g. SSIs can be serious
- Open question: is it ethical to go into a trial with ~10:1 microbiological difference btw. antiseptics? (Applies to some published trials)

Relevant Implications for Patient Care

- Sometimes it is useful to "look behind the scenes" of what exactly published evidence is based upon
- Alcohol is a powerful antiseptic, and the CHG+ALC or PVI+ALC combinations have added benefits
- Chlorhexidine on its own may not be the actual antiseptic supported by evidence
- Be aware, if or if not an antiseptic contains alcohol – it is then contraindicated for mucous membranes
- The jury is still out whether CHG+ALC or PVI+ALC is better for some applications

Conclusions

- A significant medical literature error has occurred in the area of skin antisepsis
- A likely reason is that published non-EBM information was not looked at or not taken into account
- Authors did not check whether new conclusions were consistent with principles of biol. plausibility
- From this instance, it is clear that biol. plausibility should be taken into account in EBM assessments
- However, it is unclear exactly how a plausibility check can be incorporated as a formal EBM requirement

Acknowledgments

- Help with systematic review process, meta-analyses, principles of EBM
- E.S.Y. Chan (Singapore)
- Insight into conceptual aspects of hand and skin antisepsis
- A.F. Widmer (Basel, CH); M.L. Rotter (Vienna, AT)
- Information on antiseptic testing & regulation in Europe
- A.F. Widmer, M. Dangel (Basel, CH); M.L. Rotter (Vienna, AT); G. Kampf (Bode, Hamburg, DE); M. Braun (Schuelke, Norderstedt, DE) Information on antiseptic testing & regulation in USA
- C.Y. Chang & colleagues (FDA, USA); J. Arbogast, D. Macinga (GOJO, USA); K. Rittle (3M, USA)

Assistance with historical literature

G. Kampf (Bode, Hamburg, DE); D. Macinga (Gojo, USA)

Other assistance (literature searching, statistics, etc.)

• T.N. Petney (Karlsruhe, DE); D.T. Bautista, P.B.Y. Fong (Singapore)

Declaration

No conflicts of interest

Hosted by Martin Kiernan martin@webbertraining.com