

EPA DRINKING WATER STANDARD AT <1.0CFU/100ML COLIFORM & <500cfu/HPC

 $10 - 105/m^{3}$

Hosted by Nicole Kenny, Virox Technologies Inc www.webbertraining.com

AIR

Alert Organisms from Clinical Microbiology Rounds

Water bacteria

- Pseudomonas aeurginosa
- Burkholderia cepacia
- Serratia marcescens - Acinetobacter calcoaceticus var.
- Chryseobacterium meningosepticum
- Aeromonas hydrophillia
- Atypical Mycobacterium species
- M chelonae, M.avium, M.mucogenicum, · M.gordonae, M.fortuitum, etc.
- Legionella species
 - L.pneumophila, L.bozemanii, etc..

The bacteria are there but we notice them only when they become resistant. Some of these microbes have doubling times of around 20 minutes

Hospital Tap Water & Infection Prevention

US Hospitals Yearly: 1.7 million infections; 99,000 deaths

Pseudomonas aeruginosa alone: 1,400 deaths in US

Problem: Waterborne pathogens such as Legionella, adapted to life in a relatively nutrient-poor environment, may be hard to culture using a nutrient-rich environment for 24-48 hours at 37°C.

Solution: Use special media (e.g., R2A) for 14-28 days at 25°C.

Cervia, et al, A Reservoir of Risk for Health Care-Associated Infection, Infect Dis Clin Pract 2008;16:349-353

Factors in Water that Make Microorganisms Resistant to Treatment

- > Cell walls containing waxy material
- > Thick protective resistant stage (e.g., cyst, oocyst, spore)
- Viruses with double-stranded DNA
- ➤ Small genome
- Low iso-electric point
- Low hydrophobicity
- Small size
- Clumping factor (genetically controlled surface structures of the specific microbe)
- Ability to associate with organic particulate matter

Emerging waterborne pathogens: can we kill them all? Nena Nwachcuku, Charles P. Gerba, Current Opinion in Biotechnology, 2004

Guideline for Environmental Infection Control-2003 Centers for Disease Control & Prevention Water

- Control spread of waterborne microbes
- Routine prevention of waterborne microbial contamination within distribution system
- Remediation strategies for distribution repair or emergencies
- Control of legionella
- · Dialysis water quality
- Ice machines and ice
- Hydrotherapy tanks and pools
- Endoscope processing

Reservoir Water Bacteria Identification

- Hoses
- Stagnant Water
- Hydro-therapy tanks
- Ice machines
- Brushes for cleaning
- Water pumps
 - Heart surgery
 - Dialysis
- Water supply systems
 - Lab water, recirculating, etc.

	Тар	Humidification	Distilled	Sterile	Nonsterile	Faucet	Sink	Ice	Dialysis
	Water	Water	Water	water or Saline	Water	aerator	or wash basin	machine Water fountain	machine
Pseudomonas aeruginosa	V	1	1	V	V	1	V	V	V
Pseudomonas fluorescens	1	1	V						
Stenotrophomonas maltophilia	1						V		~
Acinetobacter species		1	1	V	1		V		V
Sphingomonas paucimobilis		V		V					
Burkholderia cepacia			V	V	V				~
Ralstonia pickettii			1	V					
Pseudomonas stutzeri									1

Adapted From: Chapter 34 - <u>Non Fermenting Gram Negative Bacilli</u> J. Flaherty et.al. Hospital Epidemiology & Infection Control, Lippincott Williams & Wilkins 2004

understand mode of transmission and reservoirs of the organisms.

Ice machine maintenance •charcoal filters? •moldy storage bins

•sanitize surfaces •internal parts

Cleaning device • not designed for medical equipment • heavily contaminated

Formula preparation equipment caused GI Problems in "short bowel" infants

Blood product thawing

blood product pooling

Blood warmer water contamination

 contaminate blood lines •air warmer substitute

Implicated Environmental Vehicle	Mycobacterium Spp.		
Potable water used during bronchoscopy, instrument reprocessing	M. chelonae		
Potable water, ice	M. fortuitum, M. gordonae M. kansasii, M. terrae, M. xenopi		
Intrinsically-contaminated laboratory solution	M. gordonae		

Construction related infection related to water

Rhode Island- Legionella during construction

Minnesota – water outage NNICU Elizabethtikei sp. and Pseudomonas aeruginosa after sink outage.

Bio-film disrupted free floating bacteria escape and contaminate water and equipment to cause transmission.

Anticipate flushing in areas affected by water outages. -Flush till clear about 3 minutes. -Top down riser flush -Start at end of horizontal run

Healthcare-associated Outbreaks of Legionellosis

- · Contaminated aerosols
- · Exposure to aerosols produced from:
 - Cooling towers
 - Showers, aerators
 - Faucets
 - Respiratory therapy equipment
 - Room-air humidifiers
 - Decorative fountains

Colonization of Man-made Aqueous Environments

- Temperatures of 25° 42° C (77° 107.6° F)
- · Stagnation; dead legs
- · Scale and sediment
- Presence of certain free-living aquatic amobae that can support intracellular growth of *Legionella*

Prevention and Control

- Culture Water for Legionella
 - If found, culture patients
 - Retrospective epidemiology
 - Water system decontamination
- Follow High Risk Patient
 - If found in patient with nosocomial pneumonia
 - Initiate search for water source
 - Maintain cooling towers and use sterile water for nebulization
- Maintain Potable Water
 - 50C or <20C recirculation ideal
 - Heated water at 1-2mg/l free residual chlorine

Drinking Water System Disinfection • Superheat & Flush • Ultraviolet Light - 158F (70C) - No residual • Hyperchlorination - Maintenance essential - Continuous 2-6ppm free • Ozone - hlorine residual - Effective microbiocide - Bolus intermittant 17ppm - No residual • Instantaneous Steam • Metal ion

- Heating – Flash heating 88C
- Blend water & recirculate
- Silver & copper
- Electrostatic stresses affect cell death
- Continuous chlorination
 Chlorine dioxide

Microbial Control with Chlorination

- In 1990 23% of municipalities in US with >50,000 people used mono chloramine disinfection
- Advantages:
 - does not form trihalomethanes
 - heat stable
 - more effective at penetrating bio film
 Hospitals with outbreaks of Legionellosis predominately >200 beds
 - •73% of those hospitals have a transplant program
 - •31 outbreaks in hospitals with free available chlorine
 - •only one outbreak with mono chloramine
- Chlorine dioxide
- local production for legionella management (PCU area or whole hospital?) long term disinfection Royal Infirmary Glasgow Scotland (10 years)
- •Electro chemical activation of water and brine to produce disinfection products

Cooling Tower Considerations

Location of air intakes

- Drift eliminators in place
- •Design to facilitate cleaning & disinfection
- •Corrosion and biomass treatment •Tower materials resistant to disinfection
- •Startup of tower greater risk for dispersal
- •Routine maintenance
- •Testing & record keeping

CONTINUOUS TREATMENT OF TOWER WATER WITH CHEMICALS

-optimize chemical usage -control biofilm to control legionella -enhance efficiency -precautions when cleaning

Methods to culture bacteria in water						
	Advantages	Disadvantages				
<u>Spread Plate</u>	easy low tech uses low volumes of water good screen	not sensitive to low levels				
<u>Broth</u>	easy low tech sensitive to low volumes	grows dominant microbe				
<u>Membrane Filter</u>	sensitve to low conc specialized methods	higher tech expensive				

