Objectives

1. Review the evolving epidemiology of *C. difficile* infection in Québec
2. Review the advantages, disadvantages and potential limitations of mandatory surveillance of *C. difficile* infection
3. Identify future challenges in the prevention and control of *C. difficile* infection and surveillance

Province of Québec

- Eastern part of Canada
- Population, 8 million – A quarter of Canadian population
- Universal Health coverage
- Single payer: Ministère de la Santé du Québec
- Healthcare Approx. 45% of provincial budget
- French-speaking

Some figures will be in French

2003-2004

Detection of the outbreak

Sherbrooke, Québec 1991 - 2003

Fig. 1: Annual incidence per 100,000 population of *Clostridium difficile*-associated diarrhea (CDAD) in Sherbrooke, Québec, 1991-2003.

[Graph showing incidence trends over time]

Retrospective chart review
Clostridium difficile Infections: Lessons from the Quebec Experience

Prof. Yves Longtin, Laval University

Teleclass Sponsored by Vernacare www.vernacare.com

New strain – NAP1/027
- C. difficile strain
 - Resistant to fluoroquinolones
 - Use of FQ also a risk factor (OR, 3.9)
 - Partial deletion of tcdC gene

Retrospective analysis of CDI rates in Québec

- Prospective study 12 hospitals in Québec
- Incidence rate: 22.5/1000 admissions
- 30-day attributable mortality: 6.9%

Incidence des nouveaux cas de DACD/1000 admissions – MedÉcho et surveillance provinciale

Source: Santé et Services Sociaux Québec

Hosted by Paul Webber paul@webbertraining.com

A Webber Training Teleclass www.webbertraining.com
Control of the outbreak

2004-2007

Interventions to control outbreak

- Implementation of CDI surveillance
- Involvement of stakeholders at every level
 - Provincial, regional, local
 - Support from experts (INSPO, TRPIN)
- Site visits by public health officials
- Guidelines
 - C.difficile
 - Antibiotic use
- Creation of 200 additional infection control nurses positions
- Evaluation of process indicators

Prerequisites to good surveillance

- Precision
- Validity
- Reproducibility
- Ease of gathering data
- Avoiding collection of “unnecessary” data
- Clear definition of indicators and data collection techniques
- Education / training
- Risk adjustment
- Timely analysis and feedback of results
- Valid interpretation of results

Quebec surveillance of CDI

- Implemented in August 2004
 - Nap1/027 epidemics
- All 95 acute-care hospitals admitting >1000 patients per year must participate
 - excluding psychiatry, newborn units and NICU
- Smaller hospitals welcome to participate on a voluntary basis
 - Data more volatile

Surveillance, 2004-2011

- 95 participating hospitals
- 4’286’415 admissions
- 35’295’162 patient-days of data
- 28’384 cases of HA-CDI
- Global incidence rate: 8,04/10 000 patient-days
Quebec surveillances of HAI

- CDI is one of numerous surveillance programs in the Province:
 - CDI
 - Bloodstream infections
 - Hospital-wide
 - CLABSI
 - BSI in hemodialysis patients
 - S. aureus (MRSA and MSSA)
 - VRE acquisition
 - Laboratory surveillances
 - Carbapenem-producing enterobacteriaceae

CDI definition

- Presence of diarrhea
 - ≥ 3 loose stools in < 24 hours
 - Symptoms last ≥ 24 hours
 - No other obvious cause for symptom

Plus

- Presence of ToxA and/or ToxB by laboratory testing or Visualization of Pseudomembranes by colonoscopy or Histopathological diagnosis (with or without diarrhea)

Denominators

- Data aggregated
 - No individual patient data
- 4-week periods (13 per year)
 - CDI cases per 10'000 patient-days
 - More robust
 - CDI cases per 1'000 admission
 - Less robust
 - Easier to grasp for less knowledgeable individuals

Categories – time cutoffs

- Hospitalization
 - Cat. I
 - 72h
 - 4 weeks

- (nothing)
 - 72h
 - 4 weeks

- CDI
 - CDI treatment
 - Recurrence
 - 8 weeks

Hosted by Paul Webber paul@webbertraining.com
A Webber Training Teleclass
www.webbertraining.com
Clostridium difficile Infections: Lessons from the Quebec Experience
Prof. Yves Longtin, Laval University
Teleclass Sponsored by Vernacare www.vernacare.com

Categories of CDI, 2009-2010

<table>
<thead>
<tr>
<th>Category</th>
<th>Origin of acquisition</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat. 1</td>
<td>HA-CDI linked to the reporting institution</td>
<td>3167</td>
<td>69.3</td>
</tr>
<tr>
<td>Cat. 2a</td>
<td>HA-CDI linked to another non-participating institution</td>
<td>324</td>
<td>7.1</td>
</tr>
<tr>
<td>Cat. 2b</td>
<td>HA-CDI linked to ambulatory care</td>
<td>269</td>
<td>5.9</td>
</tr>
<tr>
<td>Cat. 3</td>
<td>CA-CDI</td>
<td>558</td>
<td>12.2</td>
</tr>
<tr>
<td>Cat. 4</td>
<td>Unknown origin</td>
<td>249</td>
<td>5.5</td>
</tr>
<tr>
<td>Total</td>
<td>Hospitalized</td>
<td>4567</td>
<td>100</td>
</tr>
</tbody>
</table>

Note. Only hospitalized cases are reported.

CDI surveillance

- Monitoring of complication rates also part of surveillance programs
 - Death (10-day and 30-day mortality)
 - Poor inter-observer correlation
- Toxic megacolon and colectomy
- Admission to ICU for CDI
- Readmission for CDI

Complications

Data entry

- Data entered in secure web portal
 - Must be entered within 1 month of end of period
 - Complications must be entered within 2 months of end of period

Reporting of CDI rates

- Weekly reports
 - Automated surveillance
 - Non-validated data, confidential
- Quarterly reports
 - Validated data
 - Some analysis
- Yearly report
 - Validated data, public
 - Sub analysis (strain analysis)
Risk stratification

- CDI incidence rates are stratified according to 3 different non-modifiable variables

 - University status

 - Proportion of patients >65 years of age (cutoff = 35%)

 - Hospital size (cutoff= 100 beds)

Weekly report

Public reporting

- Public report published quarterly
- Available on msss website
- Validated data
- Basic terms and everyday language
- Raw data, no extensive analysis
- Scrutinized by journalists

Hosted by Paul Webber paul@webbertraining.com
A Webber Training Teleclass
www.webbertraining.com
Public reporting

2004-2007, the years of the epidemic

Incidence des nouveaux cas de DACD/1000 admissions – MedEcho et surveillance provinciale

Source: Santé et Services Sociaux Québec

Moyenne : 3294 cas/an

7020 cas

Source: INSPQ, Système de surveillance provincial, Rodica Gilca. Adaptation par BSV MSSS nov 2006

Moyenne : 3294 cas/an

6184 cas

Source: Santé et Services Sociaux Québec

Incidence des nouveaux cas de DACD/1000 admissions – MedEcho et surveillance provinciale

Source: Santé et Services Sociaux Québec
Incidence des nouveaux cas de DACD/1000 admissions – MedÉcho et surveillance provinciale

Source: Santé et Services Sociaux Québec

Comparons le comparable (58 CH)

<table>
<thead>
<tr>
<th>Variable</th>
<th>An 1</th>
<th>An 2</th>
<th>Évolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas DACD</td>
<td>3660</td>
<td>2266</td>
<td>-38 %</td>
</tr>
<tr>
<td>Décès cause principale</td>
<td>134 (4 %)</td>
<td>56 (2 %)</td>
<td>-58 %</td>
</tr>
<tr>
<td>Décès cause contributive</td>
<td>177 (5 %)</td>
<td>79 (3 %)</td>
<td>-55 %</td>
</tr>
<tr>
<td>Colectomie</td>
<td>33 (1 %)</td>
<td>23 (1 %)</td>
<td>-30 %</td>
</tr>
<tr>
<td>Réadmission</td>
<td>243 (7 %)</td>
<td>135 (6 %)</td>
<td>-44 %</td>
</tr>
<tr>
<td>Adm. USI</td>
<td>89 (2 %)</td>
<td>47 (2 %)</td>
<td>-47 %</td>
</tr>
</tbody>
</table>

Source: Santé et Services Sociaux Québec

Incidence des DACD d’origine nosocomiale par regroupement régions

Source: Santé et Services Sociaux Québec

Source: Santé et Services Sociaux Québec

Hosted by Paul Webber paul@webbertraining.com
A Webber Training Teleclass www.webbertraining.com
Clostridium difficile Infections: Lessons from the Quebec Experience
Prof. Yves Longtin, Laval University
Teleclass Sponsored by Vernacare www.vernacare.com

Trends in CDI, 2004-2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre d'installations participantes</td>
<td>88 - 94</td>
<td>94</td>
<td>96</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Admissions</td>
<td>687 222 - 611 712</td>
<td>607 533</td>
<td>611 935</td>
<td>609 830</td>
<td></td>
</tr>
<tr>
<td>Jours-présence</td>
<td>4 976 065 - 5 042 166</td>
<td>5 023 163</td>
<td>5 121 708</td>
<td>5 097 192</td>
<td></td>
</tr>
<tr>
<td>DADC hospitalisée</td>
<td>5 355 - 6 661</td>
<td>4 417</td>
<td>4 523</td>
<td>4 567</td>
<td></td>
</tr>
<tr>
<td>DADC d'origine nosocomiale (cat. 1)</td>
<td>4 015 - 6 360</td>
<td>3 254</td>
<td>3 302</td>
<td>3 167</td>
<td></td>
</tr>
</tbody>
</table>

Trends in CDI, 2010-2012

Increase in CDI rates

Trends in CDI, 2004-2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre d'installations participantes</td>
<td>88 - 94</td>
<td>94</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Admissions</td>
<td>687 222 - 611 712</td>
<td>607 533</td>
<td>611 935</td>
<td>609 830</td>
</tr>
<tr>
<td>Jours-présence</td>
<td>4 976 065 - 5 042 166</td>
<td>5 023 163</td>
<td>5 121 708</td>
<td>5 097 192</td>
</tr>
<tr>
<td>DADC hospitalisée</td>
<td>5 355 - 6 661</td>
<td>4 417</td>
<td>4 523</td>
<td>4 567</td>
</tr>
<tr>
<td>DADC d'origine nosocomiale (cat. 1)</td>
<td>4 015 - 6 360</td>
<td>3 254</td>
<td>3 302</td>
<td>3 167</td>
</tr>
</tbody>
</table>

Trends in CDI, 2004-2011

Hosted by Paul Webber paul@webbertraining.com
A Webber Training Teleclass
www.webbertraining.com
Clostridium difficile Infections: Lessons from the Quebec Experience
Prof. Yves Longtin, Laval University
Teleclass Sponsored by Vernacare www.vernacare.com

Trends in CDI, 2004-2011

Incidence rates per stratum

Complications
Which factor(s) is (are) responsible for the increase in CDI rate?

- New strain?
- Impact of co-pathogens?
- Antibiotic use?
- Impact of new diagnostic test?
- Lowering of the guard? (i.e. Infection control burnout)?
- Random variation?

Strain typing

- Conducted yearly since 2005
 - Laboratoire de Santé Publique du Québec
- PFGE
- 10 stool samples positive for CDI per hospital per year
 - 15 per hospital with high incidence rates since 2010

Strain analysis, 2005-2011

<table>
<thead>
<tr>
<th>Period</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td>% (n)</td>
</tr>
<tr>
<td>Pulse type A</td>
<td>27% (274)</td>
<td>17% (174)</td>
<td>25% (248)</td>
<td>20% (205)</td>
<td>22% (210)</td>
<td>16% (161)</td>
<td></td>
</tr>
<tr>
<td>Pulse type A2-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12% (55)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pulse type B</td>
<td>10% (49)</td>
<td>6% (21)</td>
<td>2% (7)</td>
<td>3% (13)</td>
<td>-</td>
<td>0.3% (1)</td>
<td></td>
</tr>
<tr>
<td>Pulse type B1</td>
<td>7% (37)</td>
<td>1.8% (6)</td>
<td>4.6% (17)</td>
<td>0.8% (3)</td>
<td>0.4% (2)</td>
<td>0.3% (1)</td>
<td></td>
</tr>
<tr>
<td>Other pulse types</td>
<td>24.5% (117)</td>
<td>39.5% (131)</td>
<td>26% (100)</td>
<td>42.7% (165)</td>
<td>40.9% (185)</td>
<td>42.9% (139)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47%</td>
<td>33%</td>
<td>37%</td>
<td>38%</td>
<td>45%</td>
<td>32%</td>
<td></td>
</tr>
</tbody>
</table>

Nap1/027 and CDI rates

![Graph showing Nap1/027 and CDI rates](image1.png)

Figure 11: Taux d’incidence de DACOVIS 098 jours-présence dans les centres hospitaliers universitaires de plus de 100 lits ayant une proportion supérieure à 35% de patients de 65 ans et plus, 2010-2011

![Graph showing Nap1/027 and CDI rates](image2.png)

Figure 9: Taux d’incidence de DACOVIS 098 jours-présence dans les centres hospitaliers non universitaires de plus de 100 lits ayant une proportion supérieure à 35% de patients de 65 ans et plus, 2010-2011
Clostridium difficile Infections: Lessons from the Quebec Experience
Prof. Yves Longtin, Laval University
Teleclass Sponsored by Vernacare www.vernacare.com

Nap1/027 and CDI rates

Impact of the predominance of pulsovar A on the incidence of DACD in the Quebec region from 2009-2010

Which factor(s) is (are) responsible for the increase in CDI rate?

- New strain?
- Impact of co-pathogens?
- Antibiotic use?
- Impact of new diagnostic test?
- Lowering of the guard? (i.e. Infection control burnout)?
- Random variation?

CDI, Influenza and RSV

Seasonal Variations in Clostridium difficile Infections Are Associated with Influenza and Respiratory Syncytial Virus Activity Independently of Antibiotic Prescriptions: a Time Series Analysis in Quebec, Canada

CDI, Influenza and RSV

TABLE 3: Multivariable time series transfer function model used to estimate time series having impact on CDI incidence*
Which factor(s) is (are) responsible for the increase in CDI rate?

- New strain?
- Impact of co-pathogens?
- Antibiotic use?
- Impact of new diagnostic test?
- Lowering of the guard? (i.e. infection control burnout)?
- Random variation?

Introduction PCR in 10 hospitals

Hospitals using PCR have higher CDI rates

OR, 1.2 [95% CI, 1.1-1.3], p < 0.0001

Increase also present in non-PCR institutions

However, these hospitals historically have higher rates. Increase in CDI not significant when controlled for hospital size, teaching status and proportion of >65.

Adjusted OR: 1.1 (95% CI, 1.0-1.3); p = 0.13

Lessons learned

- Need to intensify surveillance
 - Decrease lag time between end of period and analysis of data
 - To less than 1 month!
 - Take seasonality into account when analyzing data
 - An outbreak during summer months can go unnoticed!

Incidence rates estimation
Incidence rates estimation

- Incidence rates
 - Reported per 10'000 patient-days
 - The most precise method to report incidence
 - Requires to obtain denominators
 - Typically the most difficult data to obtain
 - Not under the control of Infection Control Programs
 - Volatility of Incidence rates in Quebec
 - Need to follow rates very closely
 - Question: could we estimate incidence rates without using patient-days?

Incidence rates vs. No. of cases

- Correction for the length of period
 - Typical period = 28 days
- Number days vary around April 1st
 - Shortest = 23 days
 - Longest = 35 days

Incidence rate = (No. cases/40) / (No. days/28)

91% of observations ± 0.6 actual incidence rate
Incidence rates vs. No. of cases

- Why are denominators (almost) irrelevant?

Threshold levels

- Need to detect rapidly any change in incidence rates
 - Including during summer months
- Solution
 - Creation of threshold levels that take into account seasonality
Clostridium difficile Infections: Lessons from the Quebec Experience

Prof. Yves Longtin, Laval University

Teleclass Sponsored by Vernacare www.vernacare.com

--

Data presentation

- Ranking hospitals may lead to “misinterpretation” by non-initiated individuals

Funnel plot

- Initially created to detect publication bias in metaanalysis
- Allows to represent more accurately random variation due to sample size

Example of funnel plot

Funnel plot of CDI incidence rates

Impact of the type diagnostic assay on Clostridium difficile infection and complication rates in the context of a mandatory reporting program

Y. Longtin MD; D.Trotier MD MSc; G. Brochu PhD; B. Paquet-Bédard, RN; C. Garanc, PhD; V. Javouhey MD; C. Beaulieu MD; D. Goulet RN, MSc; Y. Longtin MD

Institut Universitaire de Cardiologie et Pneumologie de Québec (IUCPQ), Laval University Quebec, Canada

Québec C.Difficile infection surveillance network

22nd ECCMID, London - Abstract No. 1146

Background

- Clostridium difficile infections (CDI) are present worldwide and cause significant morbidity
- Surveillance has been implemented in numerous countries to improve control

Hosted by Paul Webber paul@webbertraining.com

A Webber Training Teleclass www.webbertraining.com
CDI surveillance

- Guidelines have been published regarding optimal surveillance methods.\(^1,2\)
 - Provide standardized case definitions
 - Suggest denominators and infection rates
 - Improves comparability between institutions

Laboratory tests to diagnose CDI

- Wide range of options
- Toxigenic culture
 - Detection of *C. difficile* by anaerobic culture followed by detection of toxin by cell culture cytotoxicity assay
 - The gold standard
 - Rarely used in diagnostic labs
 - Long turnaround time, impractical

- Enzyme immunoassay
 - Detect ToxA and ToxB directly from sample
 - Very practical, simple
 - Very short turnaround time
 - Not very sensitive
 - Often combined with GDH detection by EIA
 - More sensitive but less specific

- Cell culture cytotoxicity assay
 - Often considered the reference standard in non-research setting
 - Very sensitive
 - Slow turnaround time
 - Technically more complex than EIA

- PCR
 - Targeting toxin genes tcdB or tcdA
 - Rapid, sensitive and specific

Laboratory tests to diagnose CDI

- Multi-step algorithms
 - GDH detection followed by CCA, toxigenic culture or PCR
 - Sensitive
 - Cost-saving

Study objective

- Determine whether incidence and complication rates can vary depending on the type of diagnostic test
 - Single institution (Quebec Heart & Lung Institute)
 - Compare rates obtained by 2 different diagnostic tests:
 - EIA/CCA (used by approximately 70% of hospitals)
 - PCR (used by approximately 10% of QC hospitals)

Methods

- Case definition – CDI
 - Patient with diarrhea
 - >=3 loose or liquid stools in <24 hours
 AND
 - Positive laboratory assay for *C. difficile* toxins A or B from a stool sample or positive PCR for tcdB
 OR
 - Clinical diagnosis
 - Histopathology or visualization of pseudomembranes

Infection control considerations

- Patients placed into Contact Precautions according to PCR
 - Glove use
 - Gown
 - Hand hygiene with soap and water
 - Disinfection with chlorine-based product
 - Duration: up to 72h after resolution of symptoms
- HCWs blinded to the result of EIA/CCA

Hosted by Paul Webber paul@webbertraining.com
A Webber Training Teleclass
www.webbertraining.com
Clostridium difficile Infections: Lessons from the Quebec Experience
Prof. Yves Longtin, Laval University
Teleclass Sponsored by Vernacare www.vernacare.com

Methods

• Prospective observational study
 – 12-month period ending July 31st, 2011
• All samples submitted to lab for C. difficile tested in parallel using 2 different diagnostic approaches

Results

• From August 1st, 2010 – July 31st, 2011
 – 95 759 patient-days
 – 1321 stool samples submitted and analyzed in parallel
 • 888 patients

Table 2. Summary of C. difficile infection and incidence rates as detected by PCR and by EIA/CCA algorithm, August 2010 to July 2011

<table>
<thead>
<tr>
<th>Outcome</th>
<th>CDI detected by PCR</th>
<th>CDI detected by EIA/CCA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. patient-days</td>
<td>85 759</td>
<td>85 759</td>
<td>-</td>
</tr>
<tr>
<td>No. of analyzed stool sample</td>
<td>1221</td>
<td>1221</td>
<td>-</td>
</tr>
<tr>
<td>No. of positive samples (%)</td>
<td>224 (17.3%)</td>
<td>182 (14.9%)</td>
<td>0.005*</td>
</tr>
<tr>
<td>No. non-smoothed cases (%)</td>
<td>85 (6.6%)</td>
<td>55 (4.2%)</td>
<td>0.017*</td>
</tr>
<tr>
<td>Incidence density, CDI per 10,000 patient-days (95% CI)</td>
<td>8.9 (4.7-10.9)</td>
<td>5.8 (4.4-7.4)</td>
<td>0.014</td>
</tr>
<tr>
<td>No. of periods above government-imposed target (%)</td>
<td>7/13 (53%)</td>
<td>4/13 (31%)</td>
<td>0.42</td>
</tr>
<tr>
<td>Incidence rate ratio (95% CI)</td>
<td>1.52 (1.08-2.13)</td>
<td>1.0 (Reference)</td>
<td>0.015</td>
</tr>
</tbody>
</table>

* By Chi-square test
 * By Fisher's exact test
 ** Rate based on Poisson regression analysis

Hosted by Paul Webber paul@webbertraining.com
A Webber Training Teleclass
www.webbertraining.com
Table 3. Summary of C. difficile infection complication rates as detected by PCR and by EIA/CCA algorithm, August 2010 to July 2011

<table>
<thead>
<tr>
<th>Complication</th>
<th>PCR detected by PCR</th>
<th>EIA/CCA detected by EIA/CCA</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day mortality (%)</td>
<td>11/85 (12)</td>
<td>10/56 (16)</td>
<td>0.48*</td>
</tr>
<tr>
<td>Colectomy (%)</td>
<td>1/85 (1)</td>
<td>1/56 (2)</td>
<td>1.00*</td>
</tr>
<tr>
<td>Admission to intensive care unit</td>
<td>1/85 (1)</td>
<td>1/56 (2)</td>
<td>1.00*</td>
</tr>
<tr>
<td>Readmission for CDI (%)</td>
<td>11/85 (12)</td>
<td>11/56 (16)</td>
<td>0.31+</td>
</tr>
<tr>
<td>Any complication (%)</td>
<td>23/85 (27)</td>
<td>22/56 (39)</td>
<td>0.18*</td>
</tr>
</tbody>
</table>

*By Chi-square test
* By Fisher’s exact test

Table 4. Frequency of complications associated with Clostridium difficile infection as detected by PCR only and by both PCR and EIA/CCA algorithm

<table>
<thead>
<tr>
<th>Complication</th>
<th>PCR only detected by PCR (n=29)</th>
<th>Both detected by PCR and EIA/CCA (n=56)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day mortality (%)</td>
<td>1 (3)</td>
<td>10 (18)</td>
<td>0.09</td>
</tr>
<tr>
<td>Colectomy (%)</td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>1.00</td>
</tr>
<tr>
<td>Admission to intensive care unit</td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>1.00</td>
</tr>
<tr>
<td>Readmission for CDI (%)</td>
<td>0 (0)</td>
<td>11 (20)</td>
<td>0.01</td>
</tr>
<tr>
<td>Occurrence of ≥ 1 complication (%)</td>
<td>1 (3)</td>
<td>22 (39)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*By Fisher’s exact test
a One patient with colectomy was admitted to the intensive care unit

Discussion

Conclusion

• Incidence and complication rates can differ significantly depending on the type of diagnostic test
 – This variable should be taken into account to improve inter-hospital comparison
 – Methods remain to be determined
 - Stratification?
 - Standardization of diagnostic methods?

Conclusion

• CDI surveillance is increasingly popular
 • To ensure inter-facility comparison, rates must be adjusted to take into account differences not attributable to the quality of infection control programs
 – Case-mix
 – Hospital size

Conclusion

• How to take into account differences in laboratory testing?
 – Stratification?
 – Standardization of diagnostic methods?
Future directions

- Survey of local practices (2012)
- Outbreak management guidelines
- Standardization diagnostic testing
- Validation of data entry
- Obtain patient-level data on a sample of cases
- Stratification according to % NAP1 strain
- Improve understanding the heterogeneity between institutions
 - Modifiable factors?
- Antimicrobial use

Members of SPIN-CD committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Daniel Bolduc</td>
<td>Dir. de la santé publique et des soins de santé primaire, région Bas-Saint-Laurent</td>
</tr>
<tr>
<td>Mme Caroline Duchesne</td>
<td>CSSS Ahuntsic Montréal Nord</td>
</tr>
<tr>
<td>Dr Charles Freneee</td>
<td>Centre universitaire de santé McGill, président SPIN</td>
</tr>
<tr>
<td>Dre Lise-Andrée Galarneau</td>
<td>Centre hospitalier régional de Trois-Rivières, présidente du CINQ</td>
</tr>
<tr>
<td>M. Christophe Garenc</td>
<td>Institut national de santé publique du Québec</td>
</tr>
<tr>
<td>M. Simon Lévesque</td>
<td>Laboratoire de santé publique du Québec</td>
</tr>
<tr>
<td>Dr Yves Longtin</td>
<td>Institut universitaire de cardiologie et de pneumologie du Québec, président SPIN-CD</td>
</tr>
<tr>
<td>Mme Isabelle Rocher</td>
<td>Institut national de santé publique du Québec</td>
</tr>
<tr>
<td>Mme Mélissa Trudeau</td>
<td>Institut national de santé publique du Québec</td>
</tr>
<tr>
<td>Mme Josée Vachon</td>
<td>CSSS de la région Trois-Rivières</td>
</tr>
</tbody>
</table>

Now recruiting!

- Hospitals outside Québec to participate in CDI surveillance
- To compare provincial and foreign rates
 - Chance to compare yourself with other institutions
 - Quarterly and Yearly reports
 - Strain analysis
 - Online data entry
- Contact: Yves.longtin@crchuq.ulaval.ca

Conclusion

Questions?

Coming Soon

03 May Meet the Press – Tips and Techniques for Dealing With the Media
Speaker: Jim Armour, Summa Strategies, Ottawa

07 May Keeping the Hand Hygiene Agenda Alive: Acting on Data and the Influence of Global Surveys
Speaker: Prof. Didier Pittet, World Health Organization
Sponsored by WHO First Global Patient Safety Challenge – Clean Care is Safer Care

10 May Best Practices for Eliminating CAUTIs
Speaker: Robert Garcia, Stony Brook Medical Center, New York
Sponsored by Sage Products Inc. (www.sageproducts.com)

17 May Bug Basics – Essential Microbiology for Everyone
Speaker: Jim Gauthier, Providence Continuing Care, Kingston

24 May Healthcare Workplaces – Moving from Discord to Patient-Centered

Hosted by Paul Webber paul@webbertraining.com
A Webber Training Teleclass
www.webbertraining.com