Chlorhexidine Baths and Central Line Blood Stream Infections
Prof. L. Silvia Munoz-Price, University of Miami Miller School of Medicine
Teleclass sponsored by Sage Product (www.sageproducts.com)

Chlorhexidine baths and central line associated bloodstream infections (CLABSIs)

L. Silvia Munoz-Price, MD
Associate Professor of Medicine
University of Miami Miller School of Medicine
Medical Director - Infection Control Department
Jackson Memorial Hospital, Miami, FL

Disclosures
- Speaker for Sage Inc.

Outline
- Broad overview of chlorhexidine
- Bio-burden of patient’s surfaces (fecal patina)
- Sources of CLABSIs
- Chlorhexidine baths for prevention of CLABSIs
 - Studies using impregnated cloths
 - Studies using liquid chlorhexidine
- Conclusions

Chlorhexidine gluconate
- Long acting topical antiseptic
- In use since 1954
- Water soluble
- Remains active for hours after application

Chlorhexidine gluconate
- Binds to negatively charged bacterial cell wall, causing osmotic changes and finally destroying the organism
- Activity against:
 - Gram positive bacteria
 - Gram negative bacteria
 - Yeast
- No sporicidal activity

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Main uses of chlorhexidine baths

- To decrease CLABSIs
- To decrease acquisition of multidrug resistant organisms
- To decrease surgical site infections

Fecal patina

- Stool organisms do not remain in the stool but rather contaminate patient’s skin and the environment
- This is known as fecal patina or fecal veneer

Why would chlorhexidine decrease CLABSIs?

- Skin organisms
 - Staphylococcus aureus
 - Enterococcus faecalis
- Microbial density
- Skin barrier
- Microbial load

A Webber Training Teleclass

Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Chlorhexidine Baths and Central Line Blood Stream Infections
Prof. L. Silvia Munoz-Price, University of Miami Miller School of Medicine
Teleclass sponsored by Sage Product (www.sageproducts.com)

LET'S REVIEW THE LITERATURE

We will divide the studies based on the preparation used:
- Chlorhexidine impregnated cloths
- Chlorhexidine solution

STUDIES USING CHLORHEXIDINE IMPREGNATED CLOTHS

ORIGINAL INVESTIGATION
Effectiveness of Chlorhexidine Bathing to Reduce Catheter-Associated Bloodstream Infections in Medical Intensive Care Unit Patients
Susan C. Bleasdale, MD; William P. Trick, MD; Jose M. Gonzalez, MD; Brian D. Lykes, MD; Mary K. Hayler, MD; Robert A. Winters, MD

Table 2: Comparison of Incidence of Infection by Method of Bathing Patients and Infection Category

<table>
<thead>
<tr>
<th>Infection Category</th>
<th>Soap and Water</th>
<th>2% CHG</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloodstream infection</td>
<td>0.000</td>
<td>0.000</td>
<td><0.001</td>
</tr>
<tr>
<td>Surgical site</td>
<td>0.000</td>
<td>0.000</td>
<td><0.001</td>
</tr>
<tr>
<td>Infection site not specified</td>
<td>0.000</td>
<td>0.000</td>
<td><0.001</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>0.000</td>
<td>0.000</td>
<td><0.001</td>
</tr>
<tr>
<td>Superficial wound infection</td>
<td>0.000</td>
<td>0.000</td>
<td><0.001</td>
</tr>
</tbody>
</table>

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Chlorhexidine Baths and Central Line Blood Stream Infections

Prof. L. Silvia Munoz-Price, University of Miami Miller School of Medicine

Teleclass sponsored by Sage Product (www.sageproducts.com)

Table 1: Comparison of nosocomial infection rates in the Medical intensive care unit during 2 study periods

<table>
<thead>
<tr>
<th>Type of infection or culture</th>
<th>Soap-and-water period</th>
<th>Chlorhexidine gluconate period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nosocomial blood stream</td>
<td>94</td>
<td>3.59</td>
</tr>
<tr>
<td>VAP</td>
<td>5</td>
<td>3.40</td>
</tr>
<tr>
<td>UTI</td>
<td>20</td>
<td>1.25</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>7</td>
<td>1.16</td>
</tr>
<tr>
<td>MRSA</td>
<td>10</td>
<td>1.63</td>
</tr>
<tr>
<td>VRE</td>
<td>6</td>
<td>0.33</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>2.57</td>
</tr>
</tbody>
</table>

Note: Data are expressed as cases per 1,000 patient-days, unless otherwise indicated. There were 2719 patient-days, 1329 (52%) days, and 1390 (48%) days during the soap-and-water period. There were 2310 patient-days, 1249 (54%) days, and 1061 (46%) days during the chlorhexidine gluconate period. Chi-square analysis showed a significant decrease in the rate of infection with chlorhexidine gluconate. P-values were calculated using a chi-square test for trend. *Cases per 1,000 patient-days

*Changes recommended in central line insertion practice

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Chlorhexidine Baths and Central Line Blood Stream Infections
Prof. L. Silvia Munoz-Price, University of Miami Miller School of Medicine
Teleclass sponsored by Sage Product (www.sageproducts.com)

Phases
- Phase 1: Baseline
- Phase 2: Scrub-the-hub (chlorhexidine gluconate for 15 sec)
- Phase 3: 2% chlorhexidine daily body baths AND scrub-the-hub
- Phase 4: Daily ICU nursing rounds AND 2% CHG AND scrub-the-hub

Table 4. Comparison of Infection Incidence by Method of Bathing

<table>
<thead>
<tr>
<th>Phase</th>
<th>Without Chlorhexidine</th>
<th>With Chlorhexidine</th>
<th>Difference (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>15 (9.4)</td>
<td>4 (2.1)</td>
<td>11 (6.1 to 17.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Phase 2</td>
<td>12 (7.1)</td>
<td>6 (3.4)</td>
<td>6 (1.3 to 10.9)</td>
<td>0.05</td>
</tr>
<tr>
<td>Phase 3</td>
<td>3 (1.6)</td>
<td>2 (1.0)</td>
<td>1 (0.1 to 2.0)</td>
<td>0.20</td>
</tr>
<tr>
<td>Phase 4</td>
<td>6 (3.5)</td>
<td>5 (2.5)</td>
<td>1 (0.2 to 2.0)</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Table 5. Causative Microorganisms in Catheter-Related Bloodstream Infections

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>No. of Cases</th>
<th>Without Chlorhexidine</th>
<th>With Chlorhexidine *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coccal-positive bacteria</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coccal-negative bacteria</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Enterococcus species</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

*Administrated in a washcloth as 2% chlorhexidine gluconate.

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Chlorhexidine Baths and Central Line Blood Stream Infections
Prof. L. Silvia Munoz-Price, University of Miami Miller School of Medicine
Teleclass sponsored by Sage Product (www.sageproducts.com)

Topical antimicrobials in combination with admission screening and barrier precautions to control endemic methicillin-resistant Staphylococcus aureus in an Intensive Care Unit

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
Chlorhexidine Baths and Central Line Blood Stream Infections
Prof. L. Silvia Munoz-Price, University of Miami Miller School of Medicine
Teleclass sponsored by Sage Product (www.sageproducts.com)

Table 3. Time series analysis of the results of introduction of daily chlorhexidine bathing on the incidence of MRSA and VRE colonization and bacteremia.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Incidence Rate at End of Intervention</th>
<th>Incidence Rate at End of Intervention of Chlorhexidine Bathing</th>
<th>Change in Incidence Rate of Introduction of Chlorhexidine Bathing (% Change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>5.59</td>
<td>3.15</td>
<td>-43.5 (25%)</td>
</tr>
<tr>
<td>VRE</td>
<td><1.0</td>
<td><1.0</td>
<td>0</td>
</tr>
<tr>
<td>VRE Bacteremia</td>
<td>2.26</td>
<td>0.75</td>
<td>-65 (60%)</td>
</tr>
</tbody>
</table>

The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant *Staphylococcus aureus*, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: Results of a quasi-experimental multicenter trial. Michael W. Climo, MD, Krista A. Selwa, MD, Glenn Dzuckowski, MD, MPH, Virginia J. Frazer, MD; David K. Warren, MD; Thad M. Petrie, MD, MSC; Kathleen Spodick; John A. Jeremijenko, MD; James A. Babcock, PhD; Edward S. Wang, MD.

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com

Climo MW et al Crit Care Med 2009; 37:1858-1865

Climo MW et al Crit Care Med 2009; 37:1858-1865
Chlorhexidine Baths and Central Line Blood Stream Infections
Prof. L. Silvia Munoz-Price, University of Miami Miller School of Medicine
Teleclass sponsored by Sage Product (www.sageproducts.com)

Implementations of Chlorhexidine Baths
- Remove all non-compatible products from the units (soaps, lotions, skin barriers, etc)
- In-service staff giving the baths
- Personally observe baths in a regular basis
- Quantify the usage of the product by the units

Challenges During Implementation of Chlorhexidine
- Chlorhexidine doesn’t foam
- Personnel perceives this lack of foaming as lack of cleaning
- Mixing with other products (soap and water) might happen at the bedside, especially with liquid preparations

Conclusions
- Chlorhexidine baths constitute a powerful tool to decrease CLABSIs
- Preparation of the inpatient units should be done before instituting chlorhexidine baths
- Frequent observations should occur after implementation in order to ensure compliance