Healthcare Textiles and Laundry
Dr. Lynne Sehulster, Centers for Disease Control, Atlanta
A Webber Training Teleclass

Healthcare Textiles and Laundry: Important Trends That Can Impact Infection Prevention
Lynne Sehulster, PhD, M(ASCP)
Division of Healthcare Quality Promotion
Centers for Disease Control and Prevention

Let’s Talk About…

- Healthcare textiles and laundry
 - Microbial burden, transfer
 - Hygienically clean concept
- Epidemiology of healthcare textiles and transmission of infection
- Laundry process and current standards
- Current developments re: healthcare textiles
 - Healthcare customer demands
 - Antimicrobial treatments for textiles

Textiles and the Laundry Process:
Basic Epidemiology, Microbiology, and Infectious Disease Transmission Principles

Laundry and Infectious Diseases

- Textiles contaminated with body substances can contain large numbers of microorganisms (10^6 – 10^8 cfu/100 cm2 fabric)
- Few reports in the literature link laundry to disease transmission when proper procedures are followed
- Annual estimates for volume of laundry processed in U.S. health care: >10 billion lbs. (5 billion lbs. in the late 1980s)
- Continue current infection prevention practices

Some Observations About Textiles and Microorganisms in Health Care

 - Microbial sampling of HCW uniforms during normal wear
 - Staphylococcus aureus was the only bacterium to have high counts (e.g., 10-100 CFU and > 100 CFU)
 - Surgery uniforms – S. aureus; Medicine and renal uniforms – S. aureus, VRE, and C. difficile
 - Increasing numbers of S. aureus on uniforms when worn for more than one day
 - Binding ability: microorganisms to fibers (100 mg), high conc.
 - Cotton: S. aureus 2%, MRSA 1%, Pseudomonas aeruginosa 8.1%
 - Polyester: S. aureus 96.2%, MRSA 87.9%, P. aeruginosa 99.9%

Disclaimer

- The findings and conclusions in this presentation are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry.
- No financial conflicts of interest to disclose.
Healthcare Textiles and Laundry
Dr. Lynne Sehulster, Centers for Disease Control, Atlanta
A Webber Training Teleclass

Observations from a Recent Study
• 135 personnel (45% physicians, 55% nurses) in surgical depts. (60%) and medical depts. (40%)
• Nonpathogenic skin organisms isolated from all attire tested
• Rate of contamination with pathogens higher in attire changed every 2 days compared to that for daily changes ($p < 0.05$)
• Isolated pathogenic bacteria:
 - Acinetobacter spp. 37% (89/238 cultures)
 - Staphylococcus aureus 13% (32/238 cultures)
 - Enterobacteriaceae 8% (18/238 cultures)
 - Pseudomonas aeruginosa 3% (8/238 cultures)
• Only skin bacteria isolated from 4 uniforms cultured immediately after receipt from the hospital laundry
 - Bacterial loads significantly lower than on uniforms being worn

Epidemiologic Observations: Healthcare Textiles and Infection
• Of all the surfaces in a hospital, a patient will have the greatest degree of contact with his gown and the bed linens
• Despite studies documenting presence of microbes on textiles, little documentation of actual transmission
 - Rhizopus outbreak in U.S., 2009
• Difficult to measure a rare event

Microbial Burden on Textiles
• Blaser et al., JID 1984: ~10 – 100 cfu/cm²
• Fijan et al., JHI 2005: < 100 cfu/dm²
 - Quotes from German RAL-GZ 992 standard (Quality Assurance Standard for Textile Care of Hospital Laundry)
• Eriksson et al., JHI 1995: < 100 cfu/100 cm²
• Barrie and Hoffman, JHI 1995: “While a bioburden of < 1 cfu/cm² is achievable, it is neither conveniently measured nor of proven significance.”

Transfer of Microorganisms from Textiles to Other Surfaces

<table>
<thead>
<tr>
<th>Micrococcus luteus</th>
<th>Starting Log$_{10}$ CFU</th>
<th>Log$_{10}$ CFU on Surface</th>
<th>Log$_{10}$ CFU on Hands</th>
<th>Transfer Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dishcloth</td>
<td>9.14</td>
<td>6.13</td>
<td>6.09</td>
<td>0.04</td>
</tr>
<tr>
<td>Faucet (tap)</td>
<td>6.00</td>
<td>6.10</td>
<td>6.19</td>
<td>41.81</td>
</tr>
<tr>
<td>Phone receiver</td>
<td>9.73</td>
<td>6.17</td>
<td>6.19</td>
<td>0.13</td>
</tr>
<tr>
<td>Laundry (100% cotton)</td>
<td>9.39</td>
<td>5.99</td>
<td>6.19</td>
<td>0.96</td>
</tr>
<tr>
<td>Laundry (50:50 cotton/polyester)</td>
<td>9.17</td>
<td>5.99</td>
<td>6.19</td>
<td>0.96</td>
</tr>
</tbody>
</table>

In general, the transfer of microbes from a porous material to another surface is not as efficient as the transfer from a nonporous material to another surface

Current Healthcare Textiles Standard in the U.S.
• Standard for reusable textiles: Hygienically clean
 - Not quantified for microorganisms, but assume textiles are generally rendered free of vegetative pathogens
 - Through a combination of soil removal, pathogen inactivation, contaminated laundry is rendered hygienically clean
 - Carries negligible risk to healthcare workers and patients, provided that the clean textiles are not inadvertently contaminated before use
 - Sensory attributes: visual, tactile, olfactory
• Reusable surgical textiles: Sterilized

AAMI: Hygienically Clean
• No one has ever defined what “sufficient numbers” means

Hosted by Martin Kiernan martin@webbertraining.com www.webbertraining.com
Main Steps of Healthcare Laundry Processing

- Collection of soiled textiles at point of use
- Transport to laundry
- Wash cycle:
 - Flush, main wash, bleaching, rinsing, souring
- Dried and pressed
- Packaged, loaded into carts
- Delivery back to the hospital

Laundry Operations

- If using hot water washing, water temperature ≥71° C (≥160° F) is needed
 - Some healthcare facilities may not have access to water at this temperature
- Chlorine bleach (50 – 150 ppm) is effective laundry additive at various water temperatures
 - Follow manufacturer instructions for bleach use
- One of the rinses includes a mild acid (sour) to neutralize residual alkalinity from the wash
 - Helps to inactivate microorganisms
 - Reduces risk of skin reaction to alkali

Alternatives to Hot-water Laundry

- In-house laundries consume an average of 50% - 70% of the facility’s hot water (10% - 15% of the total energy used)
- Water temperature may be regulated locally
- Lower temperature (e.g., 22° – 50° C) wash cycles can be used with appropriate detergents and laundry additives
- New detergents and processes (e.g., oxidative products) are being evaluated in Europe
- Current problems associated with bleach use:
 - Not all fibers and fabrics are compatible with bleach
 - Chlorine + residual chlorhexidine gluconate (CHG) = brown stains

Conventional Laundering: Log Reductions in Bioburden

- In the wash, rinse cycles:
 - Agitation: ~3 log₁₀ unit reductions
 - Addition of bleach: ~ 3 log₁₀ unit reductions
- In the dry cycle:
 - ~ 1 – 2 log₁₀ unit reductions

- Post wash microbial burden ~10 – 100 CFU/cm²
- Predominantly gram-positive organisms

The Laundry Process: Log Reductions

<table>
<thead>
<tr>
<th>Process</th>
<th>Gram Positive LR</th>
<th>Gram Negative LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-wash at 30° C</td>
<td>0.73 – 2.47</td>
<td>0.70 – 1.16</td>
</tr>
<tr>
<td>Main wash at 40° C w/o pre-wash</td>
<td>0.97 – 2.58</td>
<td>1.11 – 2.66</td>
</tr>
<tr>
<td>Main wash at 60° C w/o pre-wash</td>
<td>1.36 – 5.56</td>
<td>3.71 – 5.8</td>
</tr>
<tr>
<td>E60 = 35° pre-wash at 30° C, main wash at 60° C</td>
<td>5.56 – >7.79</td>
<td>5.56 – >7.79</td>
</tr>
<tr>
<td>Completed main wash at 75° C</td>
<td>>5.56 – >7.79</td>
<td>>5.56 – >7.79</td>
</tr>
<tr>
<td>Disinfec ting only at 75° C</td>
<td>>5.56 – >7.79</td>
<td>>5.56 – >7.79</td>
</tr>
<tr>
<td>Complete 3-step cycle (with disinfection at 80° C)</td>
<td>>5.56 – >7.79</td>
<td>>5.56 – >7.79</td>
</tr>
</tbody>
</table>

Detergent was mix of anionic and nonionic surfactants, phosphates
Bleach: H₂O₂ agent; Disinfecting agent was peracetic acid, H₂O₂, acetic acid
Starting inocula: 10⁶ – 10⁷ CFU in 1 square cm
The disinfecting step by itself could not remove stains
"Z. Jeziorek had the greatest survival; Gram positive > Gram negative"

U.S. EPA and Detergents, Laundry Additives

- OCSPP 810.2400: Fabrics and Textiles – efficacy data recommendations
- Efficacy testing for antimicrobial pesticides intended to be used on fabrics and textiles, and which bear label claims as disinfectants or sanitizers
- Sanitizers used on fabrics: 3 log₁₀ reduction
- Disinfectants used in laundry facility: ≥ 59 carriers out of 60 – no growth (carriers inoculated with ≥ 10⁶ microbes)

Hosted by Martin Kiernan martin@webbertraining.com
www.webbertraining.com
CMS Questions to CDC

- Is hot-water laundering required?
- If a low-temperature laundry chemical is used, is a bleach rinse required?
- If an EPA-registered laundry sanitizer is used, must it bear label claims for key HAI pathogens (e.g., MRSA, VRE, Klebsiella spp.)?
- Are laundry detergents EPA-registered?

Laundry Transport / Storage

- Separate clean textiles from contaminated textiles when transporting in a vehicle
- Physical barriers and/or space separation
- Clean, unwrapped textiles can be stored in a clean location for short periods of time
- Unwrapped textiles should be stored so to prevent inadvertent contamination by soil or body substances
- This is the part of the overall process that is most vulnerable to outside contamination

Results

- Hospital A Pre-Intervention Environmental Cultures

<table>
<thead>
<tr>
<th>Category</th>
<th>Positive</th>
<th>Samples Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linen-storage room</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Clean linen delivery bins</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>Clean linen in bins</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Linen delivery truck (inside)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Linen bin holding area</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ward A linen closet</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ward B linen closet</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ward C linen</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>OF linen closet</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Linen rewashed in hospital</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>24 (60%)</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>0 (0%)</td>
<td>24</td>
</tr>
</tbody>
</table>

- Interventions: Initial Control Measures

- Based on the results of the initial investigation, Hospital A implemented the following interventions seven days after the case triggering the investigation was diagnosed:
 - changed to a different linen supply company
 - opened a different entrance for linen deliveries and a different linen bin holding area
 - removed all linen in use at the time
 - discontinued the linen storage room

Conclusions From the Outbreak Investigation

- Hospital linens were the most likely vehicle to have brought *Rhizopus* in contact with the patients
- Genetic subtyping of fungal isolates supported this epidemiologic hypothesis
- Contamination of clean linens with *Rhizopus* happened repeatedly, but might have been intermittent
- Hospital linens should be laundered, shipped, and stored in a manner that minimizes exposure to environmental contaminants

Current Standards and Developing Trends
Healthcare Textiles and Laundry
Dr. Lynne Sehulster, Centers for Disease Control, Atlanta
A Webber Training Teleclass

CDC / HICPAC Guidelines: Laundry and Bedding

From the "Guidelines for Environmental Infection Control in Health-Care Facilities" (2003):

- Epidemiology and General Aspects of Infection Control
- Collecting, Transporting, and Sorting Contaminated Textiles and Fabrics
- Parameters of the Laundry Process
- Special Laundry Situations
- Antimicrobial-Impregnated Articles and Consumer Items Bearing Antimicrobial Labeling
- Standard Mattresses, Pillows, and Air-Fluidized Beds

Process Certification Programs

- European Standard EN 14065
 - Process approach to quality management consistent with ISO 9001
- Australian/New Zealand
 - AS/NZS 4146:2000
- United States
 - HLAC

Potential CDC Concerns

- Piecemeal sampling not statistically valid
- No standards, no consensus
- Post-process product sampling does not "certify" the effectiveness of the process
- No epidemiologic evidence of an existing infectious disease transmission problem with hygienically clean textiles
- Why have an expensive program to solve a problem that has not been detected
- Numbers generated without context
- Better approach: parametric monitoring of the laundry process

OR Pack Room

Questions Raised

- Customers are beginning to question the standard
 - Is hygienically clean good enough? Should we be doing something different?
 - Should we be incorporating more antimicrobials into the laundry process on a routine basis?
- Reports of customers asking laundry operators to do ATP sampling of laundry facility surfaces, cleaned textiles
 - What does this mean?
 - Should microbial sampling of clean textiles be implemented?
 - Use of ATP monitoring of hard surfaces in a HACCP approach

A Short List of Antimicrobial Chemicals for Textiles

- Quaternary ammonium compounds plus acrylic copolymer fluid repellent
- Chitosans and chitooligosaccharides
- Quaternary ammonium compounds plus organosilane (forming a silicon-nitrogen-carbon polymer)
- Hydrophobic N-alkyl plus benzophenone containing polyethylenimine
- Silver (Ag) nanoparticles
- Copper (Cu) nanoparticles
- Gold (Au) nanoparticles
- Siloxane sulfopropylbetaine (SSPB)
- Titanium dioxide (TiO₂)
- Ag nanocomposite with TiO₂ and citric acid as a crosslinker
- Triclosan

Hosted by Martin Kiernan martin@webbertraining.com
www.webbertraining.com
Healthcare Textiles and Laundry
Dr. Lynne Sehulster, Centers for Disease Control, Atlanta
A Webber Training Teleclass

Log Reducions on Untreated Fabric (Control) and Silver Treated Fabric
Table 1. Average reductions in S. aureus (a) and E. coli (c) and PA (d) after various exposure conditions. Fabric was treated with Ag-SMS and exposed for 1 month. Results are from 3 replicates.

<table>
<thead>
<tr>
<th>No. of hours</th>
<th>Control (CFU/cm²)</th>
<th>1h Ag-CMS</th>
<th>24h Ag-CMS</th>
<th>7d Ag-CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7d Ag-CMS</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Fig. 1. Log reductions on untreated fabric (Control) and Silver Treated Fabric.

Quality Issues for Consideration
- Conduct risk-benefit analysis
- Potential toxicologic and allergic side effects
 - Does exposure alter the microbial ecology of the skin, skin integrity?
 - Potential selection for resistant microorganisms with long-term use
- Potential environmental issues
 - Biodegradability, toxicity to plants, marine life
 - Persistence of the antimicrobial effect
 - Is recharge needed, or is another treatment necessary?
- Can consistent adherence to existing infection prevention practices achieve similar results?
- Need to document an impact on healthcare-associated infection (HAI) rates while using antimicrobial treatment of textiles

EPA: Treated Article Exemption
- According to FIFRA, "treated articles" refer to articles or products that are treated with an antimicrobial pesticide to protect the article or product themselves.
- Treated Articles Exemption:
 - An article or substance treated with or containing a pesticide to protect the article or substance, if the pesticide is registered for such use
 - The Treated Articles Exemption is available only for the protection of the product and not for public health uses
 - Oder control, prevention of deterioration
 - Products bearing a public health claim must be registered in addition to the registration of the antimicrobial pesticide

Resources for More Information
 - Options for Evaluating Environmental Cleaning
 - Appendices to the Conceptual Model for Environmental Evaluation
 - CDC Environmental Checklist for Monitoring Terminal Cleaning
 - CDC Environmental Checklist
 - Environmental Cleaning Evaluation Worksheet (Excell format)
- CDI Prevention Tool Kit

EPA:
- Selected EPA-Registered Disinfectants: http://www.epa.gov/oppsrod/pcd/pesticides/index.htm

Effect of Artificial Sweat on Silver Leaching from Treated Fabrics
Table 2. Initial silver content and total silver release in standard garments of artificial sweat for 24 h.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Initial silver content (mg/l)</th>
<th>After 24 h. silver release to artificial sweat (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>A2</td>
<td>0.007</td>
<td>0.000</td>
</tr>
<tr>
<td>A3</td>
<td>0.010</td>
<td>0.001</td>
</tr>
<tr>
<td>B1</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>B2</td>
<td>0.005</td>
<td>0.000</td>
</tr>
<tr>
<td>C1</td>
<td>0.020</td>
<td>0.004</td>
</tr>
<tr>
<td>C2</td>
<td>0.025</td>
<td>0.005</td>
</tr>
<tr>
<td>D1</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>D2</td>
<td>0.010</td>
<td>0.002</td>
</tr>
<tr>
<td>E1</td>
<td>0.015</td>
<td>0.003</td>
</tr>
<tr>
<td>E2</td>
<td>0.020</td>
<td>0.004</td>
</tr>
<tr>
<td>G1</td>
<td>0.010</td>
<td>0.002</td>
</tr>
<tr>
<td>G2</td>
<td>0.015</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Hosted by Martin Kiernan martin@webbertraining.com
www.webbertraining.com

Fig. 1: Treatment of Fabric with Quaternary Ammonium/Organo-silane During the Wash Process

Fig. 2: Log reductions on untreated fabric (Control) and Silver Treated Fabric

Healthcare Textiles and Laundry
Dr. Lynne Sehulster, Centers for Disease Control, Atlanta
A Webber Training Teleclass

Thank You!

Division of Healthcare Quality Promotion
Centers for Disease Control and Prevention

“Protect patients, protect health-care personnel, and promote safety, quality, and value in the health-care delivery system”

Hosted by Martin Kiernan martin@webbertraining.com
www.webbertraining.com