Update on "no touch" room disinfection systems- uv lights, hydrogen peroxide and ozone

Dick Zoutman, MD, FRCPC Emeritus Professor Medical Microbiology & Infectious Diseases Queen's University

Hosted by Martin Kiernan martin@webbertraining.com

www.webbertraining.com

March 14, 201

Conflict Of Interest Disclosure

- An inventor of AsepticSure®
- Chief Medical Officer of Medizone International
 Inc.
- · Shareholder of Medizone International Inc
- · Rapidly evolving field
 - Data can be hard to come by
 - Not possible to include ALL technologies out there

2

Objectives

- At the end of this presentation I hope you:
 - Will be able to describe the two types of UV lamp technologies, their characteristics and efficacy
 - Will be able to describe the basis for the hydrogen peroxide vapor and mist technologies and their efficacy
 - Will be able to describe how effective ozone based methods are as a space disinfection technology
 - Understand the synergy of combining ozone and hydrogen peroxide as a novel high level disinfection technology for health care spaces and other applications
 - Will know what to look for in in vitro, in vivo and clinical studies of the new technologies for room decontamination and disinfection

The Problem

- · Too many healthcare infections
- Needless suffering and mortality
- Despite innovations and best efforts
- · Environment a major source and reservoir
- We need to find a transformational technology!
- Just cleaning where the "dots are" is not good enough!

4

Characteristics of the Ideal Room Disinfection System

- √ Highest possible kill of all relevant organisms especially C. difficile spores
- ✓ Fast
- ✓ Simple to perform
- ✓ Cost effective
- ✓ Can be safely deployed
- √ No environmental residues
- ✓ Reduces incidence of healthcare infections
- ✓ High quality supportive scientific evidence

Quality of Evidence Concerning H₂O₂, UV, O₃

- Can be very mixed so read it critically
- Peer reviewed literature best
- in vitro studies
 - Using test chambers etc
 - Bacteria or other organisms on various materials
 - Steel discs/coupons
 - Fabric, carpet, plastics, various building finishes
 - Good controls with many replicates
 - Quantitative Carrier Tests (QCT) Protocol by Springthorpe and Sattar et al
 - Use of a soil load
 - Each organism brings unique challenges

6

in vivo Testing

- In hospital rooms, laboratories, various field locations
 - Random assignment of rooms/spaces
 - No over lap of methods, "wash out times"
 - Detailed surface culture protocol with large number of samples
 - Highly standardized, with different methods
 - Supplemented with microbe loaded coupons in standard locations in the room
 - Always use spores of spore forming pathogens
 - eg C. difficile, Bacillus spp, Geobacillus spp. etc.

7

Interpreting Results

- Want to see expression of data as log₁₀ kill (or log₁₀ survivor)
 - Kill =starting inoculum-survivors
 - Expressed as log₁₀ kill
 - Use geometric means for large number of samples
 - Need dozens of replicates under any one set of conditions especially for *in vitro* testing
- Surface swabs
 - Typically expressed as cfu/cm²
 - Typically see 10's to 100's cfu/cm²
 - Count specific pathogens
 - Or count all heterotrophic bacteria on the surface

8

Clinical Studies

- Before and after studies citing reductions in infections
 - Rates of HAI vary significantly over time
 - Be cautious in the interpretation of these results
- · Prefer randomized and multicenter design ideally
 - Difficult to do and costly
 - Combined with surface cultures and loaded coupons and clinical outcomes to make a comprehensive evaluation

9

A Bit of Physics About UV Light

- · Ultraviolet germicidal irradiation (UVGI)
- · Wavelength shorter than that of visible light
 - UVA 400 nm to 315 nm
 - UVB 315 nm to 280 nm
 - UVC 280 nm to 200 nm
- The entire UV spectrum can kill or inactivate many different microorganisms
- UVC energy provides the most germicidal
- · 265 nm optimum wavelength

10

Susceptibility of Organisms to UVC

From Martin SB et al . ASHRE Journal. August 2008

Mercury Vapor Lamps

- In mercury vapor lamps, the mercury vapor is excited to create UV-C
- · Create UV at 253.7 nm.
- This is close to the average peak DNA absorbed at 260-265 nm.
- Mercury lamps produce continuous UV light

12

Xenon Vapor Lamps

- Pulsing a xenon UV lamp PX-UV
- Results in a flash of light with a broad spectrum from 200 nm to 320 nm
- · Millisecond pulses
- · More UV-C wavelengths are produced
- High intensity of the fast pulses may give PX-UV better disinfection efficacy?

13

Mercury UV System Tru-D

- · An automated mobile UV-C unit
- · Tru-D; by Lumalier
- Shown to produce a 3 log10 kill of vegetative bacteria
 - MRSA, VRE, and A. baumannii
- 2.4-log10 kill of *C. difficile* seeded onto Formica surfaces in experimentally contaminated patient room

Rutala WA, Gergen MF, Weber DJ. Room decontamination with UV radiation. *Infect Control Hosp Epidemiol* 2010;31:1025–1029.

Tru-D

- Tru-D, Lumalier studied in reducing environmental contamination with vegetative bacteria
- Measured using aerobic colony counts and C. difficile inoculated onto stainless steel carrier disks
 - Boyce JM et al. Infect Control Hosp Epidemiol 2011;32:737–742

16

Tru-D

- Room decontamination with the Tru-D UV system
- Reductions in aerobic bacteria on 5 high-touch surfaces.
- Mean C. difficile log10 reductions ranged from 1.8 to 2.9 when cycle times of 34.2–100.1 minutes were used
- Surfaces in direct line of sight were significantly more likely to yield negative culture results after UV decontamination than before decontamination
 - Boyce JM et al. Infect Control Hosp Epidemiol 2011;32:737–742

Tru-D

- On inoculated surfaces
- Reflected dose of 22,000 $\mu\text{Ws/cm2}$ for $\underline{45}$ minutes
- Kill of C. difficile spores and MRSA by >2-3 log10 colony forming units (CFU)/cm2
- Kill of VRE by >3-4 log10 CFU/cm2
- Same level of kill of MRSA and VRE was achieved in 20 minutes at a reflected dose of 12,000 μWs/cm2,
- But killing of *C. difficile* spores was reduced significantly.
 - Nerandzic MM. BMC Infect Dis 2010;10:197.

18

Organism	Control (cfu)	Log10 Kill		
		480 sec (8 min)	720 sec (12 min)	
MRSA	1.23 x10 ⁵	5.01	n/a	
VRE	2.75 x 10 ⁴	4.44	n/a	
C. difficile	3.33 x 10 ⁵	4.52	5.52	

- C. difficile 9 samples, MRSA & VRE 4 samples.
 "The experiment was conducted at an independent microbial testing laboratory" Modified from: Stibich M. Abstract presented at SHEA/Fifth Decennial Meeting 2010

Xenex Study at MD Anderson

- January to March 2010 at MD Anderson Cancer Center, Houston Tx
- 12 rooms extensively surface cultured at discharge for VRE isolation
- Isolation clean with germicide x 30 mins.
- 3 x 4 min exposures to Xenex lamp
- · Cultures taken before cleaning, after cleaning and using the Xenex lamp Stibich et al. Infect Control Hosp Epidemiol 2011;32(3)

XENEX TABLE 2. Impact of Standard Cleaning and Pulsed-Xenon Ultraviolet (PX-UV) Disinfection on Room Bacterial Heterotrophic Plate Count (HPC) No. of HPC mean, Room status CFU/cm² Comparison 1 .0083 2.638 Before cleaning After standard terminal cleaning 91 27.4 Comparison 2 6.430 < .0001 Before cleaning After PX-UV treatment 75 4.309 < .0001 Comparison 3 After standard terminal cleaning 27.4 After PX-UV treatment Stibich et al. Infect Control Hosp Epidemiol 2011;32(3)

Property	UV-C Light	Xenon Pulse Light
Source	Mercury bulb	Xenon bulb
Exposure time	20-100 min	8-12 mins over 2-3 doses
Vegetative bacterial kill	3-4 log	4-5 log
C. difficile spore kill	2-3 log	4-5 log (limited data)
Risks	UV exposure	UV exposure
Toxicities/By Products	Mercury vapor	None
Controlled Clinical Trials	Yes	None yet
Costs	\$124,500 capital \$1,600 for lamps (9000 h)	?? Lamps x 3-4 months
Other	Line of sight effect	Scant data, line of sight effect

H₂O₂ Technologies • Bioquell - 30% H₂O₂ solution - H₂O₂ vapor • Glosair (ASP) - 5-6% H₂O₂ solution - ASP (I&I) acquired Sterinis in 2009 - H₂O₂ mist/aerosol • VHP (Steris) - 35% H₂O₂ solution - H₂O₂ vapor

Sealing Ducts in a Room

Jim Doyle in www.stltoday.com/business/article published August 15, 2010

Bioquell Efficacy for CDI

- HPV decontamination of 5 high-incidence CDI wards followed by hospital-wide decontamination of rooms vacated by patients with *C. difficile* infection (CDI)
- 25.6% of cultures from surfaces before HPV decontamination yielded C. difficile
- compared with 0 cultures of samples obtained after HPV decontamination (P <.001)

Boyce et al. Infect Control Hosp Epidemiol 2008; 29:723–729

Bioquell and CDI Cont'd

- During 9 month intervention period
- On the 5 high incidence wards rates of CDI dropped from 2.28 vs 1.28 cases per 1,000 patient-days (P<.047)
- Hospital wide incidence fell from 1.89 vs 0.88 cases per 1,000 patient-days (P <.047) during the high incidence months pre and post intervention.

Boyce et al. Infect Control Hosp Epidemiol 2008; 29:723–729

Bioquell and MRSA

- 74% of 359 swabs taken before cleaning yielded MRSA
- After cleaning, all areas remained contaminated, with 66% of 124 swabs yielding MRSA.
- After treatment of 6 rooms with HPV (Bioquell) only 1 of 85 (1.2%) swabs showed MRSA
 - note smaller sample size after exposure however
- 5 hour cycle time
- 500 ppm H2O2 (high)
 - French GL et al. Journal of Hospital Infection (2004) 57, 31–37

36

Bioquell Clinical Study

- HPV process took 1.5-3.0 hours
- The only reduction in MDRO was the reduced incidence seen for VRE acquisitions
 - 5 times less likely in the HPV treated rooms
 - adjusted IRR, 0.20
 - 95% CI, .08-.52
- No statistically significant reduction in acquisitions of MRSA, C. difficile or MDR gram negative bacilli

Passaretti CL et al. Clin Infect Dis 2013; 56: 27-35

Bioquell Clinical Study

- 218 (21.0%) of the 1039 patient rooms sampled were contaminated with ≥1 MDRO
- HPV demonstrated reduced bacterial contamination in:
- rooms contaminated with multiple MDROs (RR, 0.16; P < .01),
- MDROs cultured from a room that differed from the room occupant's known MDRO (RR, 0.37; P = .01)
- and MDROs cultured from empty rooms (RR, 0.31; P = .05)
- But not individually for MRSA, VRE, C difficile or MDR Gram
 Negative Bacilli containing rooms, but frequency of these was low
- Mostly VRE 35/55=64% of rooms during the HPV intervention
- One brand of paint used on the walls of one of the HPV
- units showed some incompatibility with the process

Passaretti CL et al. Clin Infect Dis 2013; 56: 27-35

Sterinis Trial (becomes Glosair)

- Teaching hospital in Zonguldak, Turkey
- Steel discs inoculated and placed in many locations in patient rooms 53m3
- MRSA and A. baumannii
- · Applied Sterinis HP Mist
- 2.5 hr cycles
- Piskin N et al. Am J Infect Control. 2011 Nov;39(9): 757-62

 Table 4. Comparison of the activity of the DMHP system

 according to presence or absence of a barrier

	contam Mean (±SI		
	In absence of a barrier	In presence of a barrier	P value
Pure MRSA suspension carrying disks	4.70 ± 0.0	3.52 ± 1.82	.059
Pure Acinetobacter suspension carrying disks	4.67 ± 0.0	3.79 ± 1.35	.059
Serum containing MRSA suspension carrying disks	4.45 ± 0.63	1.49 ± 1.86	.003
Serum containing Acinetobacter suspension carrying disks	4.44 ± 0.0	2.92 ± 1.75	.01
SD, standard deviation.			

4n

Tru-D vs Bioquell "Head to Head"

- 500 bed hospital
 - 15 patient rooms at random from 8 wards
- 5 high touch surfaces cultured for ACC
- Steel discs loaded with 10⁶ C. difficile spores placed in 5 areas close to high touch surfaces
- BI's with 10⁴ and 10⁶ G. stearothermophilus
- Results
- HPV (Bioquell)
 - 93% ACC negative
 - 6 log10 *C. difficile* kill
 - 99-100% BI's killed2.5-3 hr cycles
- UV-C (TRU-D)
 - 52% ACC negative
 - <2 log10 *C. difficile* kill
 - 0-22% % BI's killed
 - 0.6-1.7 hr cycles

Havell et al. Infect Control Hosp Epidemiol May 2012;33(5):507-512

Parameter	Glosair (ASP)	VHP (Steris)	BioGienie	BioQuell
H2O2 %	5-6%	35%	6%	35%
Dispersion	Dry Mist/ Aerosol	Vapor	Dry Mist/ Aerosol	Vapor
Final Conc H2O2	50-80 ppm	~500 ppm		~500 ppm
Cycle Time	~2-3 hr	2-8 hrs	≥3 hr	≥2 hr, up to 5 hr
C. difficile log10 kill	2-3 log	No data for <i>C.</i> difficile. 5-6 log for Bacillus	No data for <i>C.</i> difficile. 5-6 log for Bacillus	6 log for C. difficile. 6 log for Bacillus
Controlled Clinical Trials	Some small	?	?	Yes
Cost	\$65,000? \$50 per room	?	?	\$44,000 capit Cost per room

Dura ∩ a	sc An	tiha	ctorial	
Pure O ₃ a	ווא כנ	uva	Cleriai	
_				
Table 1. Bacterial	susceptibility to	ozone gas		
		Log 10 redu	tion in cfu's	
	ATCC #	Wet sample	Dry sample	
Gram-positive bacteria				
Bacillus cemus	11778	> 3.1	> 3.1	
Bacillus spizizenii	6633	> 3.2	> 3.2	
Clostridium difficile	43593	> 4.0	> 4.0	
MRSA	Clinical isolates	> 3.0	> 3.0	
Methicillin-sensitive Staphylococcus aureus	Clinical isolates	> 2.5	> 2.5	
Probionibacterium acnes	11827	≥ 4	≥ 4	
Streptococcus pyogenes	12384	≥ 4	≥ 4	
Gram-negative bacteria				
Adnetobacter baumanni	19606	≥ 4	≥ 4	
Enterococcus faecalis	51299	> 3	> 3	
Escherichia coli	25922	> 3.1	> 3.1	
Haemophilus influenzae	19418	≥ 4	≥ 4	
Klebsiella pneumoniae	10031	≥ 4	≥ 4	
Legionella pneumophila	33152	≥ 4	≥ 4	
Pseudomonas aeruginoso	27853	≥ 4	≥ 4	
Acid-fast bacteria				
Mycobacterium smegma	tis 14468	> 2.7	> 2.7	

Ozone & Hydrogen Peroxide in Biological Systems

- Antibodies have been shown to have catalytic activity that produces BOTH H₂O₂ AND O₃
 - BUT the amount produced of each is so low that neither could kill any microorganism
- Trioxidane (H₂O₃) has been detected as the extremely reactive intermediary molecule of this reaction
- Trioxidane is lethal to organisms in minute amounts!

Nyffeler, Wentworth & Lerner et al. Angewandte Chemie 2004, from Scripps Research Institute and Oxford University

AsepticSure® Microbiology Techniques 1 cm stainless steel disks as the bacteria & spore carriers The quantitative carrier test (QCT-2) standard used or modified

In vitro Testing System for AsepticSure Polycarbonate chamber Fully instrumented to measure conditions Computer controlled and recorded results Used MRSA as test organism initially to define optimal conditions

Hosted by Martin Kiernan martin@webbertraining.com www.webbertraining.com

In vivo Testing System AsepticSure

AsepticSure Results					
Organism	Ozone (PPM)	H2O2 (%)	Exposure (min)	Microbial Kill (Log ₁₀)	
MRSA	80	1	15	6.3	
VRE	80	1	15	6.2	
E. coli	80	1	15	6.5	
S. typhimurium	80	1	15	6.1	
P. aeruginosa	80	1	15	6.0	
L. monocytogenes	80	1	15	6.3	
C. difficile spores	80	1	15-30	6.1	
B. subtilis spores	80	1	30	6.1	
Mycobacterium terrae	80	1	30	6.2	

Testing Materials

- AsepticSure system also effective on:
 - Stainless steel
 - Plastic from toilet seats
 - Laminate
 - Carpeting
 - Cotton or synthetic cloth
 - With and without organic soil load

51

Summary of AsepticSure

- First ever use of ozone and hydrogen peroxide for high level disinfection of clinical spaces and surfaces
- Capitalizes upon HUGE synergy between ozone and hydrogen peroxide producing trioxidane
- · Very fast
- · Broad spectrum
- Consistent high level disinfection (6 log₁₀=sterilization)
- Penetrating gas goes everywhere
- Low doses of ozone and hydrogen peroxide reduces costs, risks and damage to infrastructure
- Technology proven to be very robust and reliable
- Capital Cost~ \$95,000 + ~\$10-20 per room

52

Am J Inf Control 2011;39:873-9

Effectiveness of a novel ozone-based system for the rapid high-level disinfection of health care spaces and surfaces

Dick Zoutman, MD, FRCPC, Michael Shannon, MD, MSc, b.c and Arkady Mandel, MD, PhD, DSc Kingston and Ottawa, Outario, Canada

Background: Vapor-based fumigant systems for disinfection of health care surfaces and spaces is an evolving technology. A ne system (NeepteSture) uses an ozone-based process to create a highly reactive oxidative vapor with broad and high-level antimicro built properties.

Methods: Oxione gas at 90-000 ppm was combined with 3% bydrogine percode upon in a test chamber and specialed in nonmensuing \$2.1" and 90 m² was rate. Year opposition is clusted imensification—instantial supportion areas, vanconiquios-essatian erecercoccors, Excheristia coli, Prestationnus aeruginous, Cistertilimi difficite, and decinius arbibilis spores sident con serie dis Amabili. This combination of 60 ppm since with 15. bydroging premistry super achievable say they light seriel dissinification in the Logis, reduction in the bacteria and oposes seried on seriel discs and MMS4 secord on coton gause during a 3° to 90-minuse gas some The certificiation was scalable such that in achieved the pame light seriel dissinification in this third of 90 m² moonsi

6.6-00 minutes.
Conclusion: The corone hydrogen peroxide vapor system provides a very high level of disinfection of steel and gazze surfaced against health care-associated bacterial pathogens. The system is an advanced oxidative process providing a rapid and effective means of disinfering health care surfaces and spaces.

Key Words: Ozonation; hydrogen peroxide; fumigation.

Copyright © 2011 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Eiserier Inc. All rights

AsepticSure

54

Characteristics of the Ideal Room Disinfection System

- ✓ Highest possible kill of all relevant organisms especially *C. difficile* spores
- √ Fast
- √ Simple to perform
- ✓ Cost effective
- ✓ Can be safely deployed
- √ No environmental residues
- ✓ Reduces incidence of healthcare infections
- √ High quality supportive scientific evidence

55

