

 Edward Joseph Lister Lowbury (1913 - 2007)

 Image: A pioneering and innovative English medical bacteriologist and pathologist and also a published poet.

Acknowledgements:

Prof. Ben Cowling, School of Public Health, University of Hong Kong

Prof. Yugio Li, Dept. of Mechanical Engineering, University of Hong Kong

Recent classification for airborne transmission

Obligate airborne: initiate solely through aerosols: TB

Preferential airborne: initiate through multiple routes but predominately by aerosols: Chicken pox and measles

Opportunistic airborne: typically through other routes but by aerosols in favorable conditions (as high-risk procedures such as intubation): Influenza and SARS

CDCC Centers for Disease Control and Prevention Transmission B	Transmission Based Precaution						
	Туре	Duration [†]					
Measles (rubeola)	A	4 days after onset of rash; DI in immune compromised					
Tuberculosis (M. tuberculosis)	_						
Pulmonary or laryngeal disease, confirmed	A						
Pulmonary or laryngeal disease, suspected							
Varicella Zoster	A,C	Until lesions dry and crusted					

Clinical Trials Comparing N95 and Medical Masks.

WHO guidance for infection prevention and control for H1N1

III, 1.1 - Standard & Droplet Precautions should always be applied

III,1.2 - performing aerosol-generating procedures wear a particulate respirator

Collection of laboratory specimens
Upper respiratory tract (above larynx)
Standard and Droplet Precaution
Lower respiratory tract specimens
Aerosol-generating procedures IPC measures

Contests for Disease Control and Prevention Recommendation for 2009 H1N1 Pandemic

"At the start of the 2009 outbreak, there was uncertainty regarding the transmission dynamics of the novel H1N1 virus. While seasonal influenza is spread by large respiratory droplets, a concern at the onset of any potential influenza pandemic is whether the pathogen will have a different dynamics or methods of spread."

13th May - CDC recommends N95 to be used in all situations

Comment on Blachere et al: PCR positive is not the same as culture positive

Airborne Transmission and Precaution – Facts and Myths Prof. W.H. Seto, Hong Kong

Broadcast live from the 2014 Healthcare Infection Society conference, Lyon, France

vorkers	respire	tory viru:	mec			110	Accepte	d 3 December 2010. Public	hed Online 27 Januar
handini Raini eng Yang, ^b V ayzidur Rahn Table 2. Inte	a MacIntyre, ^a Veixian Shi, ^b han, ^a Neil Fen ntion to treat an	Quanyi Wang, ^b Zhanhai Gao, ^a X guson ^c nalysis using randor	Simon Cau inghuo Pan	chemez, ^c Holly 9 g, ^b Yi Zhang, ^b >	Seale, ^a Domii Gaoli Wang, ^a sis	nic E. Dwyer, ^d 'Wei Duan, ^b			
	CRI		iu•		Laboratory-	onfirmed	Influenza		
Arms	N (%)	OR (95% CI)***	N (%)	OR (95% CI)***	N (%)	OR (95% CI)***	N (%)	OR (95% CI)***	
N95 fit-tested	21/461 (4-6)	0.76 (0.27-2.13) P = 0.60 [†]	1/461 (0-2)	0.35 (0.04-3.42) Pm = 0.37 [†]	8/461 (1-7)	0.69 (0.24-2.03) $P_{\infty} = 0.50^{+}$	3/461 (0-7)	0-64 (0 15-2-68) Pm = 0.54 [†]	
	16/400 (3.35	0.48 (0.24-0.98)	2/488 (0-4)	0-67 (0-11-4-03)	5/488 (1)	0-39 (0-12-1-22)	0/488 (0)	0	
N95	10/400 (3.3)	P = 0.0451							
N95 non-fit-tester All N95	10/468 (33) 1 37/949 (39)	$P_m = 0.045^{\dagger}$ 0.62 (0.28-1.35) $P_m = 0.23^{\dagger}$	3/949 (0-3)	0.52 (0.10-2.57) Pm = 0.42	13/949 (1-4)	0.54 (0.21 - 1.36) $P_m = 0.19^{+1}$	3/949 (0-3)	$P_m = 0.113^{\dagger}$	

Bayzid Rahman ¹ , Yi Zh	anyi Wang², Holly ۵ مر ang², Xiaoli Wang², ۱	eale ¹ , Peng Yang ² Anthony T. Newal	² , Weixian Shi ² , Zhar I ¹ , Anita Heywood ¹ ,	nhai Gao ¹ ,	
and Dominic E. Dwyer ³		Am J Re	espir Crit Care Med Vo	ol 187, Iss. 9, pp 96	0–966, May 1, 2013
TABLE 2. NUMBER AND PROP	ORTION OF PARTICIPAN	TS REPORTING PRIM	IARY OUTCOMES, BY R	ANDOMIZATION	
ARM AND INTENTION-TO-TRE/	AT ANALYSIS	Targete	ed N95 Arm	N	95 Arm
/ariable	Medical Mask Arm N (%)	N (%)	P Value (ICC)*	N (%)	P Value (ICC) [†]
CRI	98/572 (17.1)	61/516 (11.8)	0.280 (0.1166)	42/581 (7.2)	0.0238 (0.1194)
u	4/572 (0.7)	2/516 (0.4)	0.4882 (<0.0001)	6/581 (1.0)	0.5416 (<0.001)
Arus .	19/572 (3.3)	17/516 (3.3)	0.985 (0.0206)	13/581 (2.2)	0.4394 (0.0311)
Bacteria + CRI	84/572 (14.7)	52/516 (10.1)	0.27 (0.091)	36/581 (6.2)	0.019 (0.086)
	120/572 (21.0)	75/516 (14.5)	0.2448 (0.1279)	52/581 (9.0)	0.0163 (0.1338)
Bacteria (any symptoms) ¹	91/572 (15.9)	56/516 (10.8)	0.260 (0.100)	39/581 (6.7)	0.022 (0.102)
Bacteria (any symptoms) ³ Airus or bacteria + CRI			0 2484 (0 1 220)	52/581 (9.0)	0.016 (0.1442)
3acteria (any symptoms) [®] ⁄irus or bacteria + CRI ⁄irus or bacteria (any symptoms)	123/572 (21.5)	77/516 (14.9)	0.2404 (0.1557)	041001 (710)	

Broadcast live from the 2014 Healthcare Infection Society conference, Lyon, France

Broadcast live from the 2014 Healthcare Infection Society conference, Lyon, France

Finally a study - the sources were naturally infected influenza volunteers. Claims to be the first <u>"end-point host-exposure and sampling study"</u> where special manikins were exposed to these volunteers.

Tang J, Gao CX, Cowling BJ, et al: Absence of detectable influenza RNA transmitted via aerosol during various human respiratory activities – experiments from Singapore and Hong kong. PLOS ONE September 2014 Vol 9, Iss 9 e107338 1-9

Results

No influenza RNA was detected from any of these swabs with either team's in-house diagnostic influenza assays.

iubject ode no.	Influenza A/B	Age (yrs)	Sex (M/F)	Days post- onset of illness	Air sampling method	Test distance (m)	Patient 'source' activities	Influenza RNA detected in filter/sampler (cop/mL)	Influenza RNA cop/mL in source diagnostic swab
00902	A	47	м	3	PTFE filter + SKC BioSampler	0.1	Count 1-20; Cough 10 times	None	9.50×10 ⁷
01402	A	42	м	3	PTFE fiber + SKC BioSampler	0.1	Count 1-100; Cough 10 times	None	1.39×10 ⁵
01702	A	14	F	2	PTFE filter + SKC BioSampler	0.1	Breath 1 min; Count 1-20; Cough 20 times	None	1.67×10 ¹
00602	A	17	F	3	PTFE filter + SKC BioSampler	0.1	Talk 10 min; Count 1-100; Cough 20 times	None	4.19×10 ⁵
02702	A	22	'	2	PTFE filter + SKC BioSampler	0.1	Talk 10 mirc Count 1-100, Cough 20 times	None	8.67×10 ⁶
03802	A	49	F	3	PTFE filter + SKC BioSampler	0.1	Talk 10 min; Count 1 to 100; Cough 20 times	None	7.40×10 ⁶
04102	A	57	1	2	PTFE filter + SKC BioSampler	0.1	Talk 10 min; Count 1 to 100; Cough 20 times	None	3.01×10 ⁶
05602	A	62	F	2	SKC BioSampler	0.1, 0.5	Talk 10 min; Count 1 to 100; Cough 20 times	None	5.38×10 ⁵
00203		not given	м	3	SKC BioSampler	0.1, 0.5	Talk 10 min; Count 1 to 100; Cough 20 times	None	3.70×10 ⁶

bject de no.	Influenza A/subtype, or B	Age (yrs)	Sex (M/F)	Days post- onset of illness	*Test distance (m) – see footnote	^b Patient 'source' activities – see footnote	Influenza RNA detected in manikin facial swabs (cop/mL)	Influenza RNA cop/mL in source diagnostic swab
	A/H3	22	м	3	1, 1/10	See	None	1.29×10 ⁵
	A/H1N1pdm	22	м	2	(o0.1/10.1/1r 0.1 for additional close-up couph)	footnote*	None	2.88×10 ⁴
	8	23	F	6	0.1/1		None	2.14×10 ⁴
	A913	25	M	2			None	3.55×10 ⁵
	8	21	м	1			None	4.57×10 ⁶
	8	50	F	3			None	6.76×10 ⁶
m and 1 m. sal breathing (sl. Coughing v 10.1371/journa	for 20 seconds), mo as performed at b (pone.0107338.000	uth breathing (20 th far (about ~1 2	m) and near (~0	ly from one to ten in En 11 m) distances from the e two stu	gish (43 st. counting slowly fr manikin's face.	om one to ten in a second lar	guage (e.g. Mandarin, German	. 43 st. laughing (10 s) and i

balaer der 2017; 17: 211-225 word Alas breifgehöhling zon jan Printed in Singapare. All righte renered	C.2007 The Andore Journal completion to Blackweld Manhagaard 2007 INDIGAL RE doc 20.1111/j.1600-6666.2006.00.69.x
How far droplets can move in indoor environments - revisiting the Wells evaporation-falling curve	Expiratory droplet exposure between
X. Xie ¹ , Y. Li ¹ , A. T. Y. Chwang ¹ , P. L. Ho ² , W. H. Seta ³ ¹ Department of Nectourisal Engineering, The University of Hong Kong, Kong, China, "Department of	individuals in a ventilated room
China, ² Department of Microbiology, Oueen Mary Hospital, Hong Kong, China	Submitted by
	LIU, Li
	For the Degree of Doctor of Philosophy
	Department of Mechanical Engineering
	at The University of Hong Kong
	in July 2011

A. Are Most Respiratory Viral Infections Airborne?

Most studies done – Influenza and SARS

	RESEARCH LETTERS
Research letters	
la CARC airbarna?	
IS SARS all DOTTE?	
C Effectiveness of precautions against	droplets and contact in prevention of
encounteries of precautions against	a receivatory cyndrome (SAPS)
nosocomial transmission of severe acu	e respiratory syndrome (SARS)
W H Seto, D Tsang, R W H Yung, T Y Ching, T K Ng, M Ho, L M Ho, J S M *Members listed at end of report	Peiris, and Advisors of Expert SARS group of Hospital Authority*
We did a case-control study in five Hong Kong hospitals, with 241	SARS 2-7 days after exposure, with no exposure to case
11 index patients with severe acute respiratory syndrome (SARS)	For this study, index patients were selected only when there
during patient care. All participants were surveyed about use of	was documented clustering, indicating recent spread o
mask, gloves, gowns, and hand-washing, as recommended under	infection. We could identify infected staff because since early
with SARS, 69 staff who reported use of all four measures were	reordary, nonication of stati with SARS was mandatory in hospital authority hospitals. We tested sera taken from index
not infected, whereas all infected staff had omitted at least one	patients and infected hospital staff during the acute phase of
measure (p=0-0224). Fewer staff who wore masks (p=0-0001),	the infection and during convalescence for antibodies to the
gowns (p=0-006), and washed their hands (p=0-047) became	corona-like virus' associated with SARS using an indirec
intected compared with those who didn't, but stepwise logistic regrassion was significant only for masks (n=0.011). Practice of	minunofiourescence test.' We awayded one beenital that had a large neaccomia
droplets precaution and contact precaution is adequate in	outbreak because a drug nebuliser was used on an inder
significantly reducing the risk of infection after exposures to	patient with SARS for longer than 10 days. Droplets
patients with SARS. The protective role of the mask suggests	precautions have never been recognised as an effective
About he becombele. Indention is to consult and by description	infaction control measure for such served severiting

Pre	aution	No pathogen				Pashogen			
Hand hygione"		kdentilled, no risk factor for Alit of posinitial concern (in g. Initiareza-like littless without risk factor for Alit of pownitial concern)	Bacental ARI ^A , including plague	Tuberculosis	Paratettareza RSV & Adenovirus	Influenza virus with sustained human-to-human stansmission (0.9 seasonal Enfluenza, pandemic influenza)	New Influenza visus with no sustained human-so-human transmission 0.6,g.artisn influenza)	SARS	Novel A SP
		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GIONOS		Risk assessment ⁴	Risk assessment ⁴	Risk assessment ⁴	Yes	Risk assessment ⁴	Yes	Yes	Yes
Gown*		Risk assessment ⁴	Risk assessment ⁴	Risk assessment ⁴	Yes	Risk assessment ⁴	Yes	Yes	Yes
Eye protection		Risk assessment ⁴	Risk assessment	Risk assessment*	Fisk assessment*	Risk assessment	Yes	Yes	Yes
Medical mask on HOWs and caregivers		Yes	Risk assessment	No	Yes	Yes	Yest	Yos*	Not routinely ⁴
	for room entry	No	No	Yes	No	No	Not routinely ⁴	Not routinely*	Yes
Particulate respirator or	within 1 m of patient	No	No	Yes	No	No	Not routinely#	Not routinely*	Yes
caregivers	for aerosol- generating procedures'	Yas	Not routinely	Yes	Not routinely	Yes	Yes	Yes	Yes
Modical mas when outpads areas ⁸	solution	Yas	Yes	Yes	Yed	Tes	Yes	Yes	Yes
Adoquality v separate roo	ortitation in	Yes, If available*	No	No	Yes, If available*	Yes, if available*	Yes	Yes	Not routinely ³
Albome pre	aution norm*	No	No	Yes or Cohort	No	No	Not routinely*	Not routinely*	Tes
Summary of	PC pressions	Standard	Standard	Standard	Standard	Standard	Standard	Slandard	Standard
for routine pa	bert care,	Dropiet		-	Dropket	Dropiet	Dropiat	Dropiot	
GENERATE	G			-	Contact		Contact	Contact	Contact
PROCEDUR	E,			Arbome	-			-	Alborne

B. Can we define the aerosols generating procedures?

Ten WHO Recommendations for Infection control and Prevention of Acute Respiratory Viral Infections	Recommendations: Uncload study for a distribution of privators with ARMs prepared the transmission of ARM prelinports IECN and one spaces. The contrast study is a study of the other damping and prepared as studied ands, hence are the study of the other and the privator of the other damping and the study of the study of the study of the study of the study of the study of the study of the study of the IECN and the study of the study of the study of the st	Ranking Strong Strong Strong Conditional
Seto WH, Conly JM, et al: Infection prevention and control measures for acute respiratory	5 accellings the trial accelerate (secondary the providers and sequencing probaging TPT may be used when providing cases in private any relative asymptotic cases that the providing cases in the private sequence and the	Strong Conditional
infections in healthcare settings: an update. East Mediterr Health J. 2013;19 Suppl 1:S39-47. Review.	2 Todayahyu sufiasti ang terum shark be send shary performing among providers that here been construction most that how the hower for the star performing among providers that here been summarizes most that how the hower for the star performs and performs of the star performance of the star performs and the star performs and the star performance of the star performs and the star performs and the star performs and the star performs and performs with ABA and the based on the duration of approximation from successing with perform and performs the star performs and the star performs and the star performs and performs with ABA and the based on the duration of approximation from successing with perform and performs the star performs and the star	Conditional Strong - Conditional

WHO meta-analysis			_{രണ്ടര്} Risk Requ Toro	Factors fo i Factors fo uiring Intu onto, Canad	r SARS T bation: A da	ransmission fro Multicentre In	[∰] PLot om Patients vestigation in	one	
The most consistent statistically significant association of an increased risk of SARS transmission to HCWs was found for <u>trached intubution</u> (8 studies) (see Table 13 and Fig. 6). Increased fixed of SARS transmission was also reported when performing non-			Janet R Gravel [®] , Shirley Stewart	taboud ^{1,2} , Altynay S ⁸ , Bonnie Henry ⁹ , St Paton ⁶ , Donna Rey t ^{3,10} , Mary Vearnco	higayeva ³ , Allis ephen Lapinsky nolds ¹³ , Damon nbe ^{4,7} , Dick Zor	on McGeer ^{23,4} , Erika Bonto ^{8,10} , Mark Loeb ¹¹ , L. Clifford Scales ^{2,10} , Sandy Shen ¹ , Ai Itman ¹⁴ , Karen Green ³	wics ⁵ , Martin Chapman ^{6,2} , 4 McDonald ¹² , Marianna C adrew Simor ^{6,2} , Thomas	Denise fner ²⁸ ,	
invasive ventilation (2 studies), tracheotomy (1 study), and manual ventilation before						HCWs who did not develop SARS N = 598	HCWs who developed SARS N = 26	p value	All N = 624
introduction (1 study), however these internets were identified not a very initiated number			Potential HCW exp	osure to respiratory	secretions*				
of very low quality studies which makes interpretation difficult.			Non-invasive ventile	lation		99 (17%)	10 (39%)	<0.01	109 (17%)
			High flow oxygen			106 (18%)	2 (8%)	0.29 ^h	108 (17%)
			Mechanical ventilat	tion		227 (38%)	9 (35%)	.73	236 (38%)
<u>3 studies all together</u>			HCW involvement i	in intubation?					
			Intubation (includin	ng fiber optic intubation		132 (22%)	12 (46%)	<0.01	144 (23%)
One NIV and manual ventilation before intubation is the same study			Suctioning before is	intubation		106 (18%)	7 (27%)	0.29*	113 (18%)
One study on NIV with OR > 1			Suctioning after int	tubation		155 (26%)	10 (39%)	0.16	165 (26%)
One study on tracheostomy			Manual ventilation	before intubation		106 (18%)	10 (18%)	0.025	118 (1996)

	HCWs who did not develop SARS N=598	HCWs who developed SARS N = 26	p value	All N = 624				
Respiratory protection while in patient room > None > Surgical mask > MS or equivalent > Higher protection than NBS (eg., NS plus Stryker hood, PAPRd)	49 (8%) 25 (4%) 406 (83%) 28 (5%)	3 (12%) 5 (19%) 18 (69%) 0 (9%)	0.04*	52 (8%) 30 (5%) 514 (82%) 28 (4%)				
Pescal protective equipment removal > None word > Non hand hygiene performed > No hand hygiene before removing face protection, hand hygiene before removing face protection, on hand hygiene at the end > Hand hygiene at the end > Hand hygiene in the end	41 (7%) 192 (12%) 290 (49%) 14 (2%) 61 (10%)	3 (12%) 11 (42%) 8 (31%) 0 (0%) 4 (15%)	0.564	44 (7%) 203 (33%) 298 (46%) 14 (2%) 65 (10%)				
Infection control training > None > Other (information from colleagues) > Email or written instructions > Group sessions > Individual face to face instruction	173 (29%) 9 (2%) 136 (23%) 127 (21%) 153 (29%)	16 (62%) 0 (0%) 2 (8%) 2(8%) 6 (23%)	0.0094	189 (30%) 9 (1%) 138 (22%) 129 (21%) 159 (25%)				

Parameter	OR	95% CI	p value	
HCW's eye/mucous membranes exposed to body fluids	7.34	(2.19, 24.52)	.001	
Patient APACHE II score #20	17.05	(3.20, 90.75)	.009	
HCW present during ECG	3.52	(1.58, 7.86)	.002	
HCW present during intubation	2.79	(1.40, 5.58)	.004	
Patient PaO₂ to FiO₂ ratio ≤59	8.65	(2.31, 32.36)	.001	
	Patient APACHE II score ≥20			
	HCW present during ECG			
	HCW present during intubation			
	Patient PaO_2 to FiO_2 ratio ≤ 59			

Broadcast live from the 2014 Healthcare Infection Society conference, Lyon, France

Research article	Open Access	
from SARS?	sures might protect health care workers	
Wei-Qing Chen*1, Wen-Hi Ning Lin ³ , Li Ling ¹ , Jian Hi	⊔a Ling², Ci-Yong Lu¹, Yuan-Tao Hao⁴, Zhong- ⊔ang⁴, Gang Li⁵ and Guang-Mei Yan⁶	
Tracheostomy	several limitations of the study ought to be mentioned here. First, our investigation was limited to two affiliated hospitals of Sun Yat-sen Iniversity. This is not represen- tive of all of the hospitals in which patients with SMS were admitted and cared for in Gausgibour. Therefore, the wards was not objectively assessed for some reason, meaning that we could not carely evaluate the influence of the vertilation in the wards on the transmission of symmetry of the start of the start of the start and the start of the start of the start of the vertilation of the start of the start of the start and the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the star- al indicately features with the index case directly or indicately features and the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the lifetime start of the sta	

Centers for Disease Control and Prevention cociety inserving heaver

Aerosol-generating procedures

Some procedures performed on patients are more likely to generate higher concentrations of respiratory aerosols than coughing, sneezing, talking, or breathing, presenting healthcare personnel with an increased risk of exposure to infectious agents present in the aerosol. Although there are limited objective data available on disease transmission related to such aerosols, many authorities view the following procedures as being very high exposure risk aerosol-generating procedures for which special precautions should be used: •Bronchoscopy •Sputum induction

•Endotracheal intubation and extubation

•Open suctioning of airways •Cardiopulmonary resuscitation

•Autopsies

Aerosol-generating high risk procedures.

.....

Both WHO/CDC: Intubation, bronchoscopy, autopsies, cardiopulmonary resuscitation, open suction of airways.

CDC only: extubation, sputum induction;

WHO only: collection of lower respiratory tract specimens.

About Sputum Induction

Sputum induction is used to obtain sputum for diagnostic purposes when <u>patients are unable to</u> <u>spontaneously expectorate a specimen.</u> The procedure <u>uses sterile water or hypertonic saline to</u> <u>irritate the airway, increase secretions, promote</u> <u>coughing, and produce a specimen.</u> The CDC and OSHA both classify sputum induction as a high-risk procedure when performed on a person with suspected or known infectious TB

WHO meta-analysis

of very low quality studies which makes interpretation difficult. There was not a statistically significant difference in the risk of SARS transmission between exposed and <u>unexposed HCW for all other procedures evaluated</u> i.e. sucton before intubation, suction after intubation, manual ventilation after intubation, bronchoscopy, <u>nebulizer</u> treatment, manipulation of oxygen mask, manipulation of BirJAP mask. deltbrillation, chest compressions, insertion of masogastric tube, collection of Sputum sample, high frequency oscillatory ventilation, high flow oxygen, endotrached algoritation, suction of body fluid, administration of oxygen, chest physiotherapy, mechanical ventilation),

Nebulizers

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 10, No. 2, February 2004

Cluster of SARS among Medical Students Exposed to Single Patient, Hong Kong

Tze-wai Wong," Chin-kei Lee,† Wilson Tam," Joseph Tak-fai Lau," Tak-sun Yu," Siu-fai Lui,‡ Paul K.S. Chan," Yuguo Li,§ Joseph S. Bresee,¶ Joseph J.Y. Sung," and Umesh D. Parashar,¶ for the Outbreak Study Group''

nonstrate effici apy was begur	transmission. Howev ient transmission even 1 on the afternoon of M	er, our find before nebu Iarch 6.	findings .ebulizer
Table 3. Time so	hedule of the clinical assessme	nt of 19 medical	Ical
Time		Til/anani	1
Time	10.00 10.40	Ill/total	<u> </u>
Time 6 March 2003	10:00-10:40 a.m. 10:40-11:20 a.m.	111/total 0/3 2/3	1
Time 6 March 2003	10:00-10:40 a.m. 10:40-11:20 a.m. 11:30 a.m12:00 p.m.	111/total 0/3 2/3 3/3	1
Time 6 March 2003	10:00-10:40 a.m. 10:40-11:20 a.m. 11:30 a.m12:00 p.m. 12:00-12:40 p.m.	III/total 0/3 2/3 3/3 1/1	1
Time 6 March 2003 7 March 2003	10:00-10:40 a.m. 10:40-11:20 a.m. 11:30 a.m12:00 p.m. 12:00-12:40 p.m. 10:00-10:40 a.m.	111/total 0/3 2/3 3/3 1/1 1/2	1
Time 6 March 2003 7 March 2003	10:00-10:40 a.m. 10:40-11:20 a.m. 11:30 a.m12:00 p.m. 12:00-12:40 p.m. 10:00-10:40 a.m. 10:40-11:20 a.m.	111/total 0/3 2/3 3/3 1/1 1/2 0/3	1
Time 6 March 2003 7 March 2003	10:00-10:40 a.m. 10:40-11:20 a.m. 11:30 a.m12:00 p.m. 12:00-12:40 p.m. 10:00-10:40 a.m. 10:40-11:20 a.m. 11:30 a.m12:00 p.m.	Ill/total 0/3 2/3 3/3 1/1 1/2 0/3 0/3	1

0

Place Reperties of hole hands at the key of the metal recognizes blood the recognizes (URM) TAYO (PRECEDS OF EACH HARDS) to the shape of your received Precising the recognizes are gone-hand may securit a local decision supports (party-metal-

> r...rel.det3 herdt-3 protein web-4 protein (E-balag, ideal in the supports') (E-balag) (E-

A Webber Training Teleclass www.webbertraining.com

	5.5.2 Tecter and assessment of recommendations
3.4	Summary

5 Design and	operation	
5.1	1 Designs for natural ventilation and hybrid ventilation systems	
	5.1.1 Natural ventilation systems	
	5.1.2 Hybrid (mixed-mode) ventilation systems	
5.2	Basic design concepts for natural ventilation	
5.3	Climatic and other considerations in ventilation design	
	5.3.1 Maintaining thermal comfort	
	5.3.2 Considerations for hot summers	
	5.3.3 Considerations for winter	
	5.3.4 Maintaining healthy indoor air quality	
	5.3.5 Managing ambient air pollution	
	5.3.6 External noise	
	5.3.7 Selecting low-emission interior materials	
	5.3.8 Humidity and mould growth	
	5.3.9 Security and vector-borne disease spread	
	5.3.10 High-rise considerations	
	5.3.11 Fire safety considerations	

Opening your windows,

The key to natural ventilation..

