1. BIOCIDES IN THE HEALTHCARE ENVIRONMENT

Dr. Jean-Yves Maillard
Welsh School of Pharmacy
Cardiff University, Wales

Sponsored by JohnsonDiversey (www.johnsondiversey.com)

Hosted by Paul Webber
paul@webbertraining.com
www.webbertraining.com

2. LECTURE OVERVIEW

- Background
- Definitions
- Usage of biocides in the healthcare environment
- Factors affecting the efficacy of biocides
- Biocides use, misuse and consequences
- Conclusion

3. OBJECTIVES

- Understand the use of biocides in the healthcare environment
- Understand the factors influencing biocidal activity
- Review the important types of biocide and some of their usage

4. RATIONALS FOR USING CHEMICAL BIOCIDES

- The control of micro-organisms is of prime importance in hospital and industrial environments but also in domiciliary environment
- In hospital there is the additional consideration of patient care
 - protection from nosocomial infection
 - prevention of cross-infection
- Preservation of pharmaceutical preparations
 - prevention of microbial spoilage
 - minimising risk of consumer/patient acquiring an infection

5. DEFINITIONS

- DISINFECTION
 - removal of micro-organisms including pathogenic ones from the surfaces of inanimate objects
 - not necessary the destruction of all micro-organisms but the reduction of micro-organisms to an acceptable level
- ANTISEPSIS
 - destruction or inhibition of micro-organisms on skin and living tissue
- CLEANING
 - removal of all foreign material (e.g., soil, blood)

6. DEFINITIONS

- PRESERVATION
 - prevention of microbial spoilage of products and decreasing risk of infection when the preparation is administered
 - preservatives should prevent the proliferation of micro-organisms in non-sterile products
 - preservatives should kill micro-organisms in sterile products
- STERILIZATION
 - complete elimination of micro-organisms including bacterial spores
 - sterility – “the absence of viable micro-organisms”
Biocide Use in the Healthcare Environment

Dr. Jean-Yves Maillard, Cardiff University, Wales
Sponsored by JohnsonDiversey (www.johnsondiversey.com)

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com

7 BIOCIDES USAGE IN THE HEALTHCARE ENVIRONMENT

- **HIGH-RISK**
 - high-level disinfection
 - contact with sterile body area
 - critical items

- **INTERMEDIATE RISK**
 - intermediate-level disinfection
 - contact with mucous membranes
 - contamination with virulent/transmissible organisms
 - semi-critical items
 - highly susceptible patients

- **LOW RISK**
 - low-level disinfection (cleaning and drying)
 - contact with intact skin
 - non-critical items

8 BIOCIDES USAGE IN THE HEALTHCARE ENVIRONMENT

MAIN WANTED CHARACTERISTICS

- Antimicrobial activity
 - broad spectrum
 - rapid activity
 - retain stability / pH
 - retain stability / TC
 - retain activity OL / HW
 - retain activity / dilution
 - residual activity

- Safety
 - low toxicity
 - degradable

9 BIOCIDES USAGE IN THE HEALTHCARE ENVIRONMENT

MAIN WANTED CHARACTERISTICS

- Formulation and usage
 - no or low corrosiveness
 - no odour
 - non staining
 - good wetting and detergency
 - easily combined with liquid or powder
 - compatible with other chemicals
 - cost-effective

10 BIOCIDES PROPERTIES

- INACTIVATION KINETIC

 Graph showing Number of viable cells vs. Time

11 BIOCIDES PROPERTIES

- INACTIVATION KINETIC

 Graph showing log number of viable bacteria vs. Time

12 FACTORS INFLUENCING EFFICACY IN PRACTICE

- Several factors affect the efficacy of disinfection
 - concentration
 - contact time
 - temperature
 - pH
 - organic load
 - organisms
 - ‘conditions’
 - formulation

- Their practical significance for the end-product and its usage is rarely discussed
FACTORS INFLUENCING EFFICACY

IN PRACTICE

CONCENTRATION

- An effective concentration is needed
- Concentration depends on
- Effective concentration
- Failure to be aware of the 'concentration' factor

FACTORS INFLUENCING EFFICACY

IN PRACTICE

CONCENTRATION

- safety
- biocide (type)
- usage
- reduce microbial load to a 'safe' level
- improper usage
- misleading claims

FACTORS INFLUENCING EFFICACY

IN PRACTICE

CONCENTRATION

- phenol has a concentration exponent of 6
- its activity reduced by the power of 6 upon dilution
- two-fold dilution means a decrease in activity of $2^6 = 64$
- use of effective and safe concentrations of biocides
- evaluation of biocidal activity
- effective quenching (neutralisation) of biocides

FACTORS INFLUENCING EFFICACY

IN PRACTICE

CONTACT TIME

- The period of treatment is important
- No straight relationship with concentration
- Length [duration] of survival

FACTORS INFLUENCING EFFICACY

IN PRACTICE

TEMPERATURE

- Temperature efficacy relationship (Q_{10} value)
- phenol 4
- butanol 28
- ethanol 45
- ethylene glycol mono-ethyl ester 300

FACTORS INFLUENCING EFFICACY

IN PRACTICE

CONTACT TIME

- The period of treatment is important
- compliance
- hand washing
- “sterilization”
- Manufacturers
- No straight relationship with concentration
- longer contact time = better efficacy
- Length [duration] of survival

FACTORS INFLUENCING EFFICACY

IN PRACTICE

TEMPERATURE

- Practical meaning
- Q_{10} for phenol is 4
- a 10°C decrease in temperature reduces the activity by a factor of 4
- Practical applications
- activity upon storage (preservative)
- enhanced activity (combining heat + biocide)
FACTORS INFLUENCING EFFICACY IN PRACTICE

pH

- A change of pH affects biocide activity and micro-organisms
- pH affects the degree of ionization (acid or base)
 - if the active species is the non-ionized molecule:
 - phenols, acetic acid, salicylic acid
 - increase pH = decrease activity
 - if the active is the ionized molecules:
 - dyes
 - increase pH = increase activity

Stability of the molecules
- thiomersal (degradation pH<7)

Usage
- glutaraldehyde

Micro-organisms
- surface charge
- growth

FACTORS INFLUENCING EFFICACY IN PRACTICE

pH

- Increasing activity as pH rises
 - QACs
 - chlorhexidine
 - diamines
 - amines
 - triphenylmethane dyes
 - glutaraldehyde

- Competition with H+ for anionic sites

- increase in degree of ionization compounds and changes in bacterial surface groups

- active factor is the un-dissociated molecule

- increased dissociation of molecule

- dissociated molecule makes only a minor contribution to antimicrobial activity

- active factor is the un-dissociated molecule

FACTORS INFLUENCING EFFICACY IN PRACTICE

pH

- Increasing activity as pH rises
 - QACs
 - chlorhexidine
 - diamines
 - amines
 - triphenylmethane dyes
 - glutaraldehyde

- Competition with H+ for anionic sites

- increase in degree of ionization compounds and changes in bacterial surface groups

- active factor is the un-dissociated molecule

- increased dissociation of molecule

- dissociated molecule makes only a minor contribution to antimicrobial activity

- active factor is the un-dissociated molecule

FACTORS INFLUENCING EFFICACY IN PRACTICE

pH

- Increasing activity as pH rises
 - QACs
 - chlorhexidine
 - diamines
 - amines
 - triphenylmethane dyes
 - glutaraldehyde

- Competition with H+ for anionic sites

- increase in degree of ionization compounds and changes in bacterial surface groups

- active factor is the un-dissociated molecule

- increased dissociation of molecule

- dissociated molecule makes only a minor contribution to antimicrobial activity

- active factor is the un-dissociated molecule

ORGANIC MATTER (INTERFERING SUBSTANCES)

- Interfering substances decrease biocide activity (blood, pus, soiling, milk, etc.)
 - decreasing amount available (absorption)
 - protection

- Practical applications
 - cleaning process
 - biocide properties

- some biocides may exert a detergent action
- some detergents may exhibit some biocidal activity
FACTORS INFLUENCING EFFICACY

INOCULUM SIZE AND TYPES OF MICRO-ORGANISMS

- Extent of microbial contamination is important
 - higher concentrations
 - longer contact time

- Different micro-organisms have different susceptibility to biocides
 - prions
 - bacterial spores
 - protozoal oocysts
 - mycobacteria
 - naked viruses
 - protozoal cysts
 - vegetative Gram-
 - fungi
 - protozoa
 - vegetative Gram+
 - enveloped viruses

INOCULUM SIZE AND TYPES OF MICRO-ORGANISMS

- Practical applications
 - extent of microbial contamination difficult to assess
 - should represent the worst case scenario
 - in laboratory-based inactivation experiments, the inoculum size should be controlled and clearly stated
 - highly infectious or virulent micro-organisms should be eliminated
 - Hepatitis B virus
 - E. coli O157

MICROBIAL GROWTH CONDITIONS

- The association of bacteria with solid surface leads to the formation of biofilms
 - less sensitive to disinfection
 - low metabolism
 - dormant cells
 - penetration
 - biofilm phenotype

- Biofilms and resistance
 - catheters
 - heart valves
 - implanted ocular lenses
 - intrauterine devices

- Biofilms and infections
 - physically conditions
 - chemical conditions
 - suspension vs. biofilm

- Practical significance
 - highly resistant microbial communities
 - testing protocols

‘CONDITIONS’

- Surface
 - porous
 - non-porous
 - animate

- Practical significance
 - reduction of adhesion
 - ‘facilitated’ disinfection

- Water activity
 - gaseous disinfectants
 - ethylene oxide, ß-propiolactone, formaldehyde

- Relative humidity
 - neutralisation

- Incompatibility
 - preparation of disinfectants
 - pre-humidification

- Practical significance
 - hard water
 - divalent cations

- Relative humidity
 - gaseous disinfectants
 - ethylene oxide, ß-propiolactone, formaldehyde

- Incompatibility
 - neutralisation

- Practical significance
 - preparation of disinfectants
 - pre-humidification
 - knowledge of product

A Webber Training Teleclass
Hosted by Paul Webber paul@webbertraining.com
www.webbertraining.com
FACTORS INFLUENCING EFFICACY

FORMULATION

SURFACE ACTIVITY

- Surface activity and biocide efficacy
- Practical significance

- Surface active agents
- Potentiation of activity
- Delivery of active
- Incompatibility

If you have any questions or need further assistance, please feel free to contact me at paul@webbertraining.com.

BIOCIDES USAGE IN THE HEALTHCARE ENVIRONMENT

LIMITATIONS

- Toxicity
- Alteration of the surface/equipment
- Incompatibility with other components of a formulation
- Overall efficacy against a given predicted micro-organism

- End user
- Environment
- Corrosiveness
- Colour formation

BIOCIDES USAGE IN THE HEALTHCARE ENVIRONMENT

HIGH-LEVEL DISINFECTION

- Aldehydes
 - glutaraldehyde
 - ortho-phthalaldehyde
 - formaldehyde

- pH >7
- Soiling
- Non corrosive
- Toxic
- Fumigation

INTERMEDIATE/LOW-LEVEL DISINFECTION

- Biguanides
 - chlorhexidine
 - polyhexamethylene biguanide (contact lenses)

- pH >7
- Soiling
- Incompatible with soap and anionic detergents
- Inactivated by hard water, some materials and plastic
Biocide Use in the Healthcare Environment

Dr. Jean-Yves Maillard, Cardiff University, Wales

Sponsored by JohnsonDiversey (www.johnsondiversey.com)

A Webber Training Teleclass

Hosted by Paul Webber paul@webbertraining.com

Page 7

Biocides Usage in the Healthcare Environment

Intermediate/low-level disinfection

- Quaternary ammonium compounds (QACs)
 - cetrimide
 - pH > 7
 - soiling
 - incompatible with soap and anionic detergents
 - absorbed by rubber/plastic
 - absorbed by fabric

- Halogen realising agents (HRAs)
 - iodine
 - pH > 7
 - soiling
 - staining
 - may corrode metals
 - long term toxicity

- Phenolics
 - triclosan (fabrics, surface)
 - pH > 7
 - soiling
 - activity greatly reduced by dilution
 - absorbed by rubber/plastic

- Alcohols
 - soiling
 - poor penetration
 - good cleansing properties
 - combination

Antisepsis

- Phenolics (triclosan)
- Alcohols
- Biguanide (chlorhexidine)
- QACs
- Iodine (povidone iodine)
- CRAs (hypochlorites)
- Hydrogen peroxide
- Aldehyde (glutaraldehyde)
Biocide Use in the Healthcare Environment
Dr. Jean-Yves Maillard, Cardiff University, Wales
Sponsored by JohnsonDiversey (www.johnsondiversey.com)

BIOCIDES USAGE IN THE HEALTHCARE ENVIRONMENT

PRESERVATION
- Acids and esters (parabens)
- Biguanides
- QACs

USE AND MISUSE
- Inappropriate disinfection regimens
 - inappropriate concentrations
 - incompatibility
 - absorption
 - microbial survival
 - contamination
 - infection
 - resistance
- Failure of a disinfection process
 - non-respect / no understanding factors affecting activity
- Overuse
 - systematic disinfection of low-risk surfaces
 - incorporation into fabrics and surfaces
 - concentrations?
 - commercial benefit

CONCLUSION
DISINFECTION IN THE HEALTHCARE ENVIRONMENT
- Appropriate usage
- Understanding factors affecting activity
- Training of end user
- Respect of manufacturer’s instructions
- Compliance
- ESSENTIAL
 - prevention
 - training
 - documentation
 - appropriate testing
 - training

FURTHER READING

Other 2005 Teleclasses
For more information, refer to www.webbertraining.com/schedule.cfm
- March 24 - Infection Control and Pre-Hospital Care with Margaret McKenzie
- March 31 - Voices of CHICA (a free teleclass)
- April 7 - Root Cause Analysis for the Infection Control Professional with Dr. Denise Murphy
- April 14 - Disinfectants and Environmental Impact with Dr. Franz Daschner
- April 19 - Methods for Testing Hand Disinfectants with Dr. Manfred Rotter

Questions? Contact Paul Webber paul@webbertraining.com