

Stewardship

- · Optimal treatment of patients while
 - limiting side effects
 - limiting antimicrobial resistance

What is SDD?

- Intravenous prophylaxis
 - cefotaxim
- Oropharyngeal decontamination
 - tobramycin and colistin
- Gastric and intestinal decontamination
 tobramycin and colistin
- Avoiding the use of anti-anaerobic antibiotics
- · Surveillance cultures twice weekly
- High level of hygiene

www.webbertraining.com

www.webbertraining.com

Endpoints

- ICU-mortality
- Hospital-mortality (primary)
- Resistance
- Duration of intubation
- LOS ICU
- Antibiotic use
- Costs

(secundary)

(secundary)

(primary)

- (secundary)
- (secundary)
- (secundary)

- Inclusion criteria:
 - Expected stay in ICU >72 hours
 - and/or expected duration of ventilation >48 hours
- Exclusion criteria:
 - Documented allergy for study medication
 - Pregnancy

End Point		Adjusted Odds Ratio or Hazard Ratio (95% CI)†						
	Standard Care	SDD	SOD					
Death — no. (%)								
During the first 28 days	1.00	0.83 (0.72-0.97)	0.86 (0.74–0.99)					
In the ICU	1.00	0.81 (0.69-0.94)	0.87 (0.74-1.02)					
In the hospital	1.00	0.88 (0.76-1.01)	0.85 (0.74-0.98)					
Time to outcome for survivors at day 28 — days	_							
Cessation of mechanical ventilation	1.00	1.10 (0.99-1.22)	1.03 (0.90-1.17)					
Median								
Interquartile range								
Discharge from ICU	1.00	1.09 (0.99-1.21)	1.06 (0.94-1.19)					
Median								
Interquartile range								
Discharge from hospital	1.00	1.13 (1.01-1.25)	1.13 (0.96–1.32)					
Median								
Interquartile range								

Coagulase-negative staphylococci NNT 16 NNT 25 NNT 43 Condido spp and other yeasts* 18 (1%) 20 (1%) 6 (<') 0.33 (0·13-0·82); ARR 0·7%; NT 152 116 (0·61-2·21) 0·28 (0·11-0·70); ARR 0·8%; NT 127		Standard care (n=1837)	SOD (n=1758)	SDD (n=186	Crude odds ratio (95% CI)		
Coagulase-negative staphylococci Candido spp and other yeasts* 18 (1%) 20 (1%) 6 (0.33 (0.13-0.82); ARR 0.7%; NNT 152 1.05 (0.61-2.21) 0.28 (0.11-0.70); ARR 0.8%; NNT 127 HRMO1 19 (1%) 20 (1%) 8 (0.41 (0.18-0.94); ARR 0.6%; NNT 170 1.10 (0.59-2.07) 0.37 (0.16-0.85); ARR 0.7%; NNT 170 executive coropharyngeal decontamination. 51 ARR-absolute risk reduction. NNT-number needed to traat. RMO-highly resistant microorganism. *One case of Saccharomyces cerevisiae in the standard-care group. 10ne patient in the control group had two episodes of bacteraemia with HRMOs (one episode on da the Enterobacter closcoe and Escherichis coli and one on day 30 with Acinetobacter bournami). ARR-absolute risk reduction. NNT-number needed to traat.					SDD vs standard care	SOD vs standard care	SDD vs SOD
HRMO1 19 (1%) 20 (1%) 8 (<10,0000,0000,0000,0000,0000,0000,0000,	Any microorganism, apart from coagulase-negative staphylococci	239 (13%)	158 (9%)	124 (7			0-72 (0-56-0-92); ARR 2-4%; NNT 43
NNT 170 NNT 145 	Candida spp and other yeasts*	18 (1%)	20 (1%)	6 (<:		1-16 (0-61-2-21)	
RMO-highly resistant microorganism. *One case of Socchoromyces cerevision in the standard-care group. 10ne patient in the control group had two episodes of bacteraemia with HRMOs (one episode on da tht Enterobucter closcon and Escherichis coli and one on day 30 with Acinetobacter bournamil).	HRMO†	19 (1%)	20 (1%)	8 (<		1.10 (0.59-2.07)	
oble 3: Patients with bacteraemia and candidaemia acquired in intensive-care units	rith Enterobacter cloacae and Escherichia	coli and one on day 30	with Acinetobact	ter baumanii).		group had two episodes of bacteraem	a with HKWUS (one episode on da
	able 3: Patients with bacteraemia a	and candidaemia acq	uired in inten	sive-care unit	5		

	Crude odds ratio (95% CI)
	SDD vs standard care
Any microorganism, apart from coagulase-negative staphylococci	0·48 (0·38–0·60); ARR 6·4%; NNT 16
Candida spp and other yeasts*	0·33 (0·13–0·82); ARR 0·7%; NNT 152
HRMO†	0·41 (0·18–0·94); ARR 0·6%; NNT 170

SDD

 42 38

Figure: Kaplan-Meier analysis of time to event of acquisition of tobramycin-resistant Gram-negative rods (A) and cefotaxime-resistant Enterobacteriaceae (B) 500-selective digestive tract decontamination. 500-selective oropharyngeal decontamination.

0.06

Systemic antibiotic use (totals in DDD)

	SDD group	SOD group	5	Standard care
Antibiotics	Total DDD use (Δ SDD vs Control)	Total DDD use (Δ SOD vs Contr		otal DDD use
Penicillins	9,767 (-27.8%)	12,805 (+5.3%)	13,523
Carbapenems	724 (-45.7%)	995 (-25.4%)		1,334
Cefalosporins	8,473 (+86.6%)	3,935 (-13.3%))	4,541
Quinolones	2,637 (-31.4%)	3,291 (-14,4%))	3,846
Clindamycins	473 (-11.6%)	553 (+3.4%)		535
Other antibiotics	7,589 (- 23.4%)	8,720 (-12.0%))	9,909
All Systemic antibiotics	29,663 (-12.0%)	30,299 (-10.1%	5)	33,688
	NE	NGL J MED 360;1	NEJM.ORG	JANUARY 1, 2009

A Webber Training Teleclass www.webbertraining.com

A Webber Training Teleclass www.webbertraining.com

ntervention	Timing	Purpose
SDD and SOD regimens		
0.5 g of a paste containing polymyxin E, tobramycin and amphotericin B each in a 2% concentration applied in oropharynx	Four times daily until ICU discharge	Selective decontaminaton of the oropharynx
10 ml of a suspension containing 100 mg polymyxin E, 80 mg tobramycin and 500 mg amphotericin B via the nasogastric tube	Four times daily until ICU discharge	Selective decontaminaton of the gut from stomach to rectum
Cefotaxime 1 g i.v. during the first 4 days of study (or other third-generation cephalosporins)	Four times daily during the first 4 days	Preemptive treatment of primary infections
Avoidance of (systemic) antibiotics that might impair the colonization resistance, that is, with antianaerobic activity	During treatment with SDD, until ICU discharge	Avoidance of penicillins, carbapenems and so on
		No addition of antibiotics for patients with colonization without clinical signs suggestive for infection
Oropharyngeal endotracheal, and rectal cultures	On admission and twice weekly	Determination of colonization pattern at admission and during treatment, including monitoring of effectiveness of SDD
		Detection of infection

SDD and SOD in Crossover Study Among 13 Dutch ICUs (N=5,939)

End Point		Study Group			Unadjusted Odd or Hazard Ratio (9			Adjusted Odds or Hazard Ratio (9	
	Standard Care (N=1990)	SDD (N=2045)	SOD (N=1904)	Standard Care	SDD	SOD	Standard Care	SDD	SOD
Death — no. (%)									
During the first 28 days	544 (27.5)	546 (26.9)	502 (26.6)	1.00	0.94 (0.82-1.08)	0.95 (0.82-1.10)	1.00	0.83 (0.72-0.97)	0.86 (0.74-0.99
In the ICU	443 (22.3)	440 (21.5)	416 (21.8)	1.00	0.91 (0.79-1.06)	0.97 (0.83-1.13)	1.00	0.81 (0.69-0.94)	0.87 (0.74-1.02
In the hospital	632 (31.8)	665 (32.6)	584 (30.7)	1.00	0.99 (0.86-1.13)	0.94 (0.82-1.08)	1.00	0.88 (0.76-1.01)	0.85 (0.74-0.98
Time to outcome for survivors at day 28 — days									
Cessation of mechanical ventilation				1.00	1.06 (0.96-1.18)	1.01 (0.89-1.15)	1.00	1.10 (0.99-1.22)	1.03 (0.90-1.17
Median	8	7	8						
Interquartile range	3-17	4-15	4-15						
Discharge from ICU				1.00	1.02 (0.92-1.12)	1.00 (0.89-1.11)	1.00	1.09 (0.99-1.21)	1.06 (0.94-1.19
Median	9	9	9						
Interquartile range	6-19	6-18	6-17						
Discharge from hospital				1.00	1.04 (0.91-1.19)	1.05 (0.91-1.22)	1.00	1.13 (1.01-1.25)	1.13 (0.96-1.32
Median	29	28	28						
Interquartile range	16-48	16-45	16-47						

Type of Infection		Study Group		Cru	de Odds Ratio (95%	CI)
	Standard Care (N=1990)	SOD (N=1904)	SDD (N=2045)	SDD vs. Standard Care	SOD vs. Standard Care	SDD vs. SOD
		no. (%)				
Staphylococcus aureus	22 (1.1)	9 (0.5)	9 (0.4)	0.40 (0.18-0.86)	0.43 (0.20-0.93)	0.93 (0.37-2.40)
Streptococcus pneumoniae	3 (0.2)	1 (0.1)	1 (0.0)	0.32 (0.03-3.12)	0.35 (0.04-3.35)	0.93 (0.06-14.9
GNF-GNR species†	36 (1.8)	17 (0.9)	16 (0.8)	0.43 (0.24-0.77)	0.49 (0.27-0.87)	0.88 (0.44-1.74)
Enterobacteriaceae	87 (4.4)	59 (3.1)	18 (0.9)	0.19 (0.12-0.32)	0.70 (0.50-0.98)	0.28 (0.16-0.47)
Enterococcus species	55 (2.8)	49 (2.6)	48 (2.3)	0.85 (0.57-1.25)	0.93 (0.63-1.37)	0.91 (0.61-1.36)
Candida species	16 (0.8)	14 (0.7)	8 (0.4)	0.49 (0.21-1.11)	0.91 (0.45-1.85)	0.53 (0.23-1.24)
Patients with at least one episode of bacteremia or candidemia — no. (%)	186 (9.3)	124 (6.5)	88 (4.3)	0.44 (0.34–0.57)	0.68 (0.53–0.86)	0.65 (0.49-0.85)

Table 4. Detection of Antibio	tic-Resistant,	Gram-Neg	ative Bact	eria in Recta	l and Res	piratory 1	Fract Sample	s during P	oint-Prev	alence Surve	ys.÷				
Organism	Resistant to	Aminoglyc	osides†	Resistant	to Ciprofi	oxacin	Resistant	to Ceftaz	idime	Multir	esistant A	8	Multir	esistant I	35
	Standard	SOD	SDD	Standard	SOD	SDD	Standard	SOD	SDD	Standard	SOD	SDD	Standard	500	SDD
	Care	500	SUD	Care	500	500		sou		Care	SOD	SUD	Care	500	SUU
Rectal samples							percerso	Re of bonne	753						
Escherichia coli	4.5¶	4.99	1.8	4.9¶	4.5	2.9	3.3¶	2.3	1.3	2.29	2.39	0.5	1.4	1.0	0.5
Klebsiella pneumoniae	2.6¶	1.4	1.0	3.0¶	1.4	0.7	2.29	1.1	0.4	0.6	1.0	0.6	1.9¶	0.3	0.3
Enterobacter cloacae	1.7¶	1.8¶	0.6	1.3	1.6	0.5	4.7¶	4.2¶	1.7	1.0	1.1	0.5	0.6	1.0	0.2
Pseudomonas aeruginosa	1.2	1.0	0.7	1.6	1.6	0.7	2.6¶	1.8¶	0.7	1.3¶	0.8	0.4	0.4	0.3	0.4
Respiratory tract samples															
E. coli	1.3¶	0.5	0	1.0	0.2	0.4	1.0¶	0.5	0	0.4	0.1	0	0.4	0.2	0
K. pneumoniae	2.0¶	0.5	0.2	2.4	0.4	0.2	1.9¶	0.6	0.2	0.1	0.2	0.1	2.0	0.2	0.1
E. cloacae	1.5¶	0.5	0.4	1.1	0.2	0.4	3.8¶	0.6	1.2	0.6	0.2	0	0.6	0.1	0.3
P. aeruginosa	2.6¶	1.8	1.0	3.79	1.8	0.9	3.5 4	1.1	0.4	2.2	1.2	0.4	0.8	0.1	0.1

-		efit of SDD a N=5,403)	
TABLE 3. STRATIFIED AN RATIOS FOR 1-YEAR MOR 1 AND 2, IN QUARTILES 3	RTALITY FO	OR PATIENTS IN	QUARTILES
	SC	SOD	SDD
Median age (IQR) Q 1, 2	53 (17)	53 (18)	54 (17)
Median age (IQR) Q 3, 4 One-year survival vs. SC	74 (8)	74 (8)	75 (8)
aOR (95% CI) age, lower quartiles (Q 1, 2)	Reference	0.81 (0.65–1.00)	1.00 (0.82–1.22)
aOR (95% CI) age, upper quartiles (Q 3, 4)	Reference	0.97 (0.79–1.18)	0.88 (0.72–1.07)
aOR (95% CI) total (Q 1-4)	Reference	0.89 (0.77-1.02)	0.93 (0.81–1.07)

An Extended Outbreak of Colistin and **Tobramycin Resistant Enterobacteriaceae** Driven by SDD TABLE 1 Susceptibilities of ESBL-producing K. pneumoniae isolates to colistin as determined by disc diffusion, Vitek, and Etest No. of isolates^b Disc diffusion (n = 89)Vitek (n = 134)Etest (n = 134) Isolate group^a S R S Ι R S Ι Ι R Before SDD 0 12 0 0 28 0 28 0 0 After SDD 45 4 31 0 75 32 0 74 28 ^a Isolates are grouped according to whether they were identified before or after the introduction of SDD on the ICU in October 2002. ^b S, susceptible; I, intermediate; R, resistant. Halaby T. Antimicrobial Agents and Chemotherapy 2013; 57 (7); 3224-9 CDC

	Regimen:					
	SC (21 ^a)		SOD (19 ^a)		SDD (17 ^a)	
	Mean	95% CI	Mean	95% CI	Mean	95% CI
Probe						
Total bacteria		2.2×10^{9} -6.2 × 10		$7.8 \times 10^8 - 3.4 \times 10^9$	1.9×10^{9}	$8.7 \times 10^{8} - 4.3 \times 10^{9}$
Bacteroides	6.5×10^{8}	$3.5 \times 10^{8} - 1.2 \times 10^{8}$		$1.4 \times 10^{8} - 9.5 \times 10^{8}$	4.2×10^{8}	$2.1 \times 10^{8} - 8.1 \times 10^{8}$
E. rectale ^b	5.1×10^{8}	$3.0 \times 10^{8} - 8.5 \times 10^{8}$		$5.4 \times 10^{7} - 3.4 \times 10^{8}$	6.2×10^{7}	$2.6 \times 10^{7} - 1.4 \times 10^{8}$
R. intestinalis				$7.0 \times 10^{6} - 4.8 \times 10^{7}$	1.1×10^{7}	$4.9 \times 10^{6} - 2.7 \times 10^{7}$
F. prausnitzii		2.3×10^{7} -1.3 × 10	$\frac{8}{4.0 \times 10^7}$	$1.6 \times 10^{7} - 9.9 \times 10^{7}$	2.9×10^{6}	$1.4 \times 10^{6} - 6.0 \times 10^{6}$
Atopobium	1.3×10^{8}	$6.6 \times 10^{7} - 2.3 \times 10^{7}$		$1.3 \times 10^{7} - 9.2 \times 10^{7}$	4.2×10^{7}	$1.4 \times 10^{7} - 1.2 \times 10^{8}$
Bifidobacteria		1.6×10^{7} -1.2 × 10 1.3×10^{8} -3.3 × 10		$5.4 \times 10^{6} - 4.6 \times 10^{7}$ $3.8 \times 10^{7} - 2.0 \times 10^{8}$	5.8×10^{7}	$1.8 \times 10^{7} - 1.8 \times 10^{8}$ $3.1 \times 10^{7} - 1.7 \times 10^{8}$
Ruminococci Enterobacteri	2.0×10^8 aceae ^c 7.2×10^7	$1.3 \times 10^{-3.3} \times 10^{-3.3} \times 10^{-3.3} \times 10^{-1.4} $		$3.8 \times 10^{\circ} - 2.0 \times 10^{\circ}$ $1.7 \times 10^{7} - 1.4 \times 10^{8}$	7.8×10^{7} 4.1×10^{6}	$3.1 \times 10^{6} - 1.7 \times 10^{6}$ $2.0 \times 10^{6} - 8.3 \times 10^{6}$
Lancie deleter	11 L L L L L L L L L L L L L L L L L L	210 75 10 111 75 10	110 71 10	117 75 10 111 75 10		10 /1 IO 010 /1 IO
Number of s Indicates a s	vas used for statistic tudy subjects ignificant difference	al analysis between the SDD and	SOD	licates a significant differ regimens	rence between	SDD and both SC and
Number of s Indicates a s mens only	tudy subjects ignificant difference bers and statistical a	between the SDD and	SC reg-	regimens		
^a Number of s ^b Indicates a s mens only	tudy subjects ignificant difference	between the SDD and	SOD SC reg-		SC vs. SDD	

	Enterococcu Domination	-	Streptococci Domination		Proteobacteria Domination		
Predictor	HR (95% CI)	P	HR (95% CI)	Р	HR (95% CI)	Р	
Age, years	1.00 (.98-1.04)	.790	0.99 (.97-1.03)	.681	1.00 (.95-1.05)	.978	
Female sex	0.84 (.42-1.64)	.611	1.07 (.50-2.27)	.852	1.12 (.33-3.78)	.854	
Underlying diagnosis (leukemia vs other)	3.22 (1.60-6.94)	.001	0.71 (.32-1.51)	.375	0.66 (.18-2.19)	.498	
Prior antibiotics (14 days) ^a	1.49 (.77-2.94)	.237	1.03 (.48-2.17)	.945	1.31 (.39-4.44)	.651	
Conditioning regimen (myeloablative or reduced intensity vs non-myeloablative)	1.01 (.44–2.84)	.977	0.61 (.25-1.75)	.329	0.98 (.22-9.25)	.983	
T-cell depleted graft	0.81 (.40-1.61)	.551	0.91 (.39-2.00)	.812	1.07 (.29-3.62)	.910	
Stem cell source (cord vs other)	1.22 (.55-2.52)	.607	0.54 (.19-1.34)	.196	1.36 (.36-4.69)	.633	
Fever ^b	1.68 (.78-3.74)	.182	0.90 (.36-2.39)	.826	1.28 (.30-6.34)	.747	
Antibiotics ^b							
Vancomycin	2.12 (.67-10.21)	.222	0.95 (.33-3.77)	.938	5.17 (.52-707.15)	.192	
Metronidazole	3.38 (1.65-6.73)	.001	1.94 (.81-4.30)	.131	1.73 (.41-6.03)	.426	
Fluoroquinolones ^o	1.09 (.49-2.24)	.832	1.19 (.51-2.60)	.677	0.09 (.0075)	.020	
Beta-lactam ^d	1.64 (.74-3.99)	.232	1.69 (.62-5.64)	.319	1.23 (.27-7.50)	.800	

A Webber Training Teleclass www.webbertraining.com

