Current Trends in Salmonella: Epidemiology, infection and control

DR KEITH WARRINER
DEPT FOOD SCIENCE
UNIVERSITY OF GUELPH
KWARRINE@UOGUELPH.CA

HOSTED BY NICOLE KENNY VIROX TECHNOLOGIES INC.

www.webbertraining.com

November 12, 2015

Outline

- Description of Salmonella -- classification, sources, physiology, and mode of drug resistance
- Recent outbreaks and recalls linked to Salmonella
- Routes of introducing and the dissemination of Salmonella in the food chain
- Overview of the Salmonella Action Plan and implications to the industry
- On farm interventions
- Processing interventions
- •Trends in Salmonella diagnostics
- Conclusions and research needs

2

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

A Webber Training Teleclass

Rank	Serovar	Number of Cases	Incidence per 100,000	
1	Enterititis	1062	2.33	
2	Typhimurium	1006	2.17	
3	Newport	656	1.44	
4	I, 4,[5], 12, i	383	0.79	
5	Javiana	347	0.76	
6	Heidleberg	243	0.53	
7	Montevideo	211	0.46	
8	Muenchen	194	0.43	
9	Tennessee	140	0.31	
10	Saint Paul	117	0.26	5

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

A Webber Training Teleclass

Pasture and soil ---- 200 days

Garden soil ---- 251 days

Liquid manure --- 27 days (S. Dublin), --- 286 days (S. Anatum)

Slurry - 84 to 250 days

Infected feces stored in cans - 159 days

(S. Dublin)

10

Growth Parameters

Temp: 7 – 49°C Opt 37°C Some serovars grow <7°C

pH 3.8 - 9.5 Opt 7.0 - 7.5 (less acid resistant compared to *E. coli*)

Facultative anaerobe: Can grow in presence of 20-80% carbon dioxide.

Water Activity: 0.94-0.99

11

Controls

Survives freezing

Thermal resistance is serovar specific

Growth inhibited by 0.1% acetic acid

Irradiation: D 0.5-0.8

Low water activity: enhances Salmonella survival and

increased thermal resistance

12

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Treatment

None: Let infection run its course; fluid replenishment

Antibiotics: Ciprofloxacin for 10-14 days

Antibiotics for immuno-compromised, infants and elderly

18

A Webber Training Teleclass

PROGRESS REPORT					
Pathogen	Healthy People 2020 target rate	2020 target rate 2014 rate*		Change compared with 2006-2008†	
Campylobacter	③	13.45	13% increase	<u>:</u>	
E. coli O157§	©	0.92	32% decrease	<u> </u>	
Listeria	@	0.24	No change	<u></u>	
Salmonella	@	15.45	No change	<u></u>	
Vibri0	@	0.45	52% increase	\	
Yersinia	<u> </u>	0.28	22% decrease	<u> </u>	

A Webber Training Teleclass

Year	ted Outb	Number of Cases	Product
2012	Typhimurium	19	Ground Beef
2011	Heidelberg	190	Chicken Livers
2011	Heidelberg	111	Turkey meat
2010	Newport	24	Alfalfa sprouts
2010	Enteritidis	1700	Eggs
2010	Typhimurium	23	Bagged lettuce
2010	Montevideo	204	Pepper
2009	Typhimurium	714	Peanut butter
2009	Saint Paul	235	Alfalfa sprouts
2008	Saint Paul	1400	Tomato/Peppers
2007	Montevideo	37	Chocolate
2007	Typhimurium	167	Pot Pies
2006-2008	Schwarzengrund	32	Dry Pet Food
2002	Poona	46	Melon

Outbreaks 2014			
Serotype	Source	Cases	
Stanley	Raw Cashew Cheese	17	
Heildelberg	Tyson Chicken	9	
Cothan and Kisarawe	Bearded Dragons	150	
Infantis and Newport	Live Poultry	251	
Typhimurium	Feeder Rodents	41	
Newport, Hartford, Oranienburg	Sprouted Chia Powder	21	
Typhimurium	Lab Exposure	41	
Stanley	Turkey meat	700 (2011- Present)	
Typhimurium	Seaweed	19	
Enteritidis	Raw Egg	>200	
Heidelberg	Foster Farms Raw Poultry	574 (2013-2014)	

Α	Web	ber	Training	Teleclass
---	-----	-----	-----------------	-----------

Outbreaks 2015			
Serotype	Source	Cases	
Typhimurium	Restaurant	280	
Enteritidis	Breaded poultry	44	
Enteritidis	Poultry Entrees US)	24	
I, 4, 5, 12:i	Pork (Pig Roast)	90	
Enteritidis	Chicks	6	
Typhimurium	Pet frogs	200	
Paratyphoid	Frozen tuna	62	
Typhimurium	Portland Conference	51	
Enteritidis	School	175	
Newport	Cucumber	780	
Enteritidis	Bean Sprouts	115	
Infantis	Unknown	34	

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Foodborne Pathog Dis. 2014 Dec;11(12):974-80. doi: 10.1089/fpd.2014.1802.

Mary Hon Liebert,

Effects of climate change on Salmonella infections.

Akil L1, Ahmad HA, Reddy RS.

Author information

Abstract

BACKGROUND: Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used.

METHODS: Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN.

25

Food Safety Inspection Service Salmonella Action Plan

26

Dec 13

FSIS Strategic Performance Working Group (SPWG)

Proposed Poultry Slaughter Rule

Baseline data

New Plant Strategies

Sanitary Dressing of Hogs

Processing Plant Scores

Revise Performance Standards

Salmonella associated with lymph nodes and interventions

Outreach and Education

Final Rule approved - Aug 2014

27

Poultry Products Inspection Act (1968)

HACCP

Sanitation Standard Operating Procedure

Generic Escherichia coli testing: Trend analysis

Salmonella performance standards

Inspection (Postmortem)

- Head
- Viscera
- Carcass

28

Verification Testing in Poultry Processing

One carcass per day for 51 consecutive processing days

Carcass rinse

>13 positive indicates failure

Provide 30 days to correct

Failure for second sampling: Write a corrective action plan

Third failure: Withdraw inspection – plant closure

29

Salmonella Performance Standards

- •FSIS 2011
- Carcass rinse or sponge samples
- •5 positive/51 carcasses Chicken
- 4 positive/56 for turkey

- •Cat 3: Failure to meet standard >7.5% Positives
- Cat 2: Meet Standard 7.5% Positives
- •Cat 1: Exceed Standard <7.5% Positives</p>

30

Poultry Slaughter Rule

Processing plant personnel to inspect carcasses: Verified by FSIS

Reduce FSIS inspectors (one per line)

Inspectors to verify off-line activities (documentation, sanitation)

Permit faster line speeds

Abolish Finished Product Standards: Ready to Cook Poultry Standards

More efficient FSIS inspection

Finished Product Standards

- Stop Generic E. coli testing
- Poor indicator for presence of Salmonella

Ready to Cook Poultry Standards

Sample at points at CCP's

Processor must establish sample frequency and target

Standards to be established

31

Sampling Activities

FSIS Annual Sampling Plan Microbiological and Residual Sampling Program 2014

Establish baseline for comminuted poultry and parts

Testing ground beef for Salmonella, in addition to STEC

Develop *Salmonella* sampling plan for raw pork and raw pork products: Currently not performed

32

Develop New in Plant Strategies

Identify developing in-plant conditions (i.e. increasing trend of non-compliance, inability to control *Salmonella*)

Categorize plants based on *Salmonella* control performance (C1, C2 and C3): Positing operators names in C2 and C3 classes

Food Safety Assessment of comminuted poultry operations

Extend Hazard Analysis Verification in poultry operations

33

Pre-Harvest Related Activities and Outreach

Identify practices that leads to increased *Salmonella* prevalence

Evidence based interventions

Transparency and closer links with industry

Provide Salmonella specific food safety advice to consumers

USDA

34

Will the Action Plan Work?

Essentially deregulation of poultry industry: Self policing throw back to 1990's

Increased line speeds: Increase efficiency or increased risk?

Failure to address multi-drug resistant Salmonella

More focus on testing that introduction of novel decontaminating technologies

Implications for beef and pork processors

Focus on data gathering rather than interventions

35

What does it mean to industry?

In theory carriage of *Salmonella* decrease by 4.5%; Save FSIS \$90m per year

Greater responsibility of the processor to reduce Salmonella carriage

Cost saving (abolish E coli testing)

Increased costs

Extended Salmonella testing (pre- and post chill points)

Interventions

Personnel for inspection

36

A Webber Training Teleclass

Opening the door for Zero Tolerance for *Salmonella*

- Salmonella is not considered an adulterant in meat Petition to class top 4 serovars as adulterants
- Heildelberg
- Newport
- •Hadar
- Typhimurium
- •Technically achievable?

39

Is Zero Tolerance Achievable?

EU Danish and Swedish models: <1% Salmonella

North America

Centralized and intensive production

Reliance on antimicrobials

Lack of interventions or willingness to adopt

Definition of zero: Depends on diagnostics

40

A Webber Training Teleclass

Est 1939 in California by Max and Verda Foster (Poultry and Dairy)

Fully integrated poultry production – processing

Revenue: \$2bn

Employ 10, 500

Reputation for quality and

innovation

41

Foster Farms

On-Farm

- · Salmonella screening of breeder hens
- Probiotic supplements
- Vaccination
- Biosecurity
- Sanitation
- Processing Plant
- Increase sanitation
- In-line conveyor disinfection
- Steam pasteurization
- Anti-microbial washes

42

Incidence

1997: Strike due to labor

practices

1998: Dumped 11 million gallons manure polluted water into a lake

iito a iak

2013

· Salmonella Heidelberg

• 278 cases

Refused to recall

Eventual recall due to insect infestation

Salmonella Hiedelberg

High virulence

Rapid mutation rate

Antibiotic resistant

Strains

B182

SL476

SL486

>700 cases

43

Salmonella Heidelberg SL476

- •111 Confirmed Clinical Cases
- •31 States
- Link to ground turkey meat and products
- •Recall of 36 million pounds of meat (Production from Feb 2011)

44

Multi-Drug Resistant Salmonella

- Resistant to two or more antimicrobial agents
- Plasmid
- Chromosome
- •3rd generation cephalosporin
- Quinolone
- Fluroquinolone
- Ciprofloxacin
- Nalidixic acid

45

Sources of Antibiotic Resistant Salmonella

- Widespread use of antibiotics
- Imported foods
- Travel
- Zoonotic

46

Antibiotic Usage

- ·Agriculture: 12 million kg per year
- •5.1 million kg: Pig production
- •5.2 million kg: Poultry production
- •1.6 million kg: Cattle
- Prevent infection
- •Compensate for high density of animals and poor sanitation
- Promote growth

47

Reasons for Emergence of Antibiotic Resistance in Developing Countries

- Little or no regulation on antibiotic usage
- Poor quality antimicrobial products (low activity)
- Poor infection prevention and control
- Lack of surveillance
- Antibiotics in environment

48

Preservation of Antibiotics for Medical Treatment Act

- •FDA banned enrofloxacin (fluroquinone) 2005 in poultry production
- •Removal of antibiotics from feed: 30 years in the pipeline
- Phase out medicated feed
- Sparing use of antibiotics for treating animals
- •No restriction of antibiotics for non-food animals- pets.

49

FDA

22nd Dec 2011: FDA withdrew partition

Industry must self-regulate antibiotic use

Ban "non-label use" cephalosporins

- <1% of antibiotics used in agriculture
- Pressure from lobby groups (Dark Money)

Weight of evidence connecting antibiotic use with drug-resistant pathogens Consumer groups taking legal action against FDA

Guidance 209: Antibiotics should not be used for growth promotion

50

A Webber Training Teleclass

How to Reduce Antibiotic Resistance

- Develop/isolate new antibiotics
- Removal of antibiotics
- Seek alternative antimicrobial agents
- Regulations

53

New Antibiotics

Figure 5. Number of New Antimicrobials Approved by the U.S. FDA between 1983 and 2007

No new class of antibiotics have been discovered in the last 30 years

54

Decreasing Antibiotic Resistance

Remove antibiotics from animal production

Denmark

Removal of avoparcin: 80% reduction in vancomycin resistance

Ban of antibiotics as growth promotors

55

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Denmark Experiment

- •Withdrew mass use of antibiotics in animal production 12 years ago
- •Decrease in prevalence of drug resistant Salmonella
- Decreased efficacy in animal production
- •Net benefit through increased exports and reduction in health care costs.

57

EU Ban

- •2006: Ban on growth promoting antibiotics
- •Decrease in avoparcin resistance with no significant effect on animal health
- ·Long term effects yet to be determined
- Proposal to take all antibiotics (medicated and therapy) out of animal production

58

Antibiotic Alternatives

Vaccination

Competitive exclusion

Antimicrobial peptides

Bacteriocins

Natural antimicrobials

Management practice and surveillance

Consumer education

59

Vaccination

- •Prime immune system to detect multiple drug resistant strains of *Salmonella*
- Oral administration of antibodies
- •Cost effective production of antibodies using transgenic plants. (\$0.1/g)
- Potential allergic reactions

60

Competitive Exclusion

Probiotics

Engineered *E. coli* to detect signaling molecules from pathogens then release of anti-microbial agents

61

Antimicrobial Peptides

D-amino acid containing peptides: Disrupt cell membranes

Absorb onto pathogen surfaces to block binding

Bind intracellular molecules

62

Salmonella Control

Focus on high risk foods

Prevention is key

- Fresh produce (e.g. sprouts and tomatoes)
- Poultry and eggs
- OLow moisture foods

63

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Poultry Production

Feed from HACCP certified mills

Pest-control program

Biosecurity (animals, facility equipment, GAP)

Manure management

Vaccination

Competitive exclusion

Medicated Feed

Surveillance

67

Manure Management

Compost for at least 120 days

3-12 month period from manure application to planting.

Biosolids < 4 cfu/g Salmonella (US); Not detected (Canada).

50 meter separation from open water

Minimize run off

Liquid manure decreases persistence of Salmonella.

68

Vaccination

Live (attenuated) *Salmonella* spray or dead cells incorporated into feed.

Pork farms: No evidence of benefit

Poultry: Permitted but not applied universally in North

America.

UK: Extensive vaccination: SE prevalence <1% of flocks.

69

Competitive Exclusion

Pre- and Probiotics

Produce antimicrobials

Biological buffer

Prevent colinization by Salmonella

Saccharomyces boulardii produce mannose that inhibits attachment of Salmonella

70

Surveillance

Sampling buildings: Drag swabs

Boot swabs

Fecal samples

Boxes and other contact surfaces

Incoming chicks: 1 week old

If positive for SE the flock destruction eggs diverted to processing.

71

Transovarian Transmission of SE

Salmonella Enteritidis

Contaminates yolk before laying

Sufficient cooking essential (no sunny side up eggs)

72

Egg Handling

Rapid cooling can cause shell fracture

Minimize temperature fluctuations

EU: Maintain eggs <15°C cannot vary more than 4°C throughout handling and distribution

FDA: Maintain <7.2°C

Condensation: Surface growth, increased penetration

72

Egg Washing

ADVANTAGES

Improve egg appearance

Reduction in surface bacterial counts

DISADVANTAGES

Remove cutical layer

Potential ingress of water into the shell (use warm water)

No conclusive evidence of efficacy to decrease incidence of *Salmonella*

74

Alternative Techniques

Gamma irradiation: 1.5 kGy Impact on sensory quality

Microwave 0.75-2 W/g: Problems with scale-up

Hot air: 600°C for 8s. Effective no changes to egg quality 1 log

reduction Salmonella

Gas plasma: 1-5 log reduction Lab based

UV light: Limited efficacy

75

Liquid Egg Pasteurization

56 - 60°C (3-4 weeks shelf life)

Dielectric and gamma irradiation

• Reduction in Salmonella although changes in functionality

High Hydrostatic Pressure: Cold pasteurization

protein denaturation (minimize by addition salt or adjusting pH to >7.7)

Pulsed Electric Fields: SE tolerant to PEF treatment

76

Egg Rule 2010

Clean and disinfect poultry houses that have tested positive for *Salmonella* Enteritidis –

Refrigerate eggs at 7.2°C during storage and transportation no later than 36 hours after the eggs are laid

Egg producers must maintain a written *Salmonella* Enteritidis prevention plan and records documenting their compliance.

Egg producers must also register with the FDA.

Mandatory: July 2012.

77

FDA Guidelines

Biosecurity

Reduce cross-contamination

Distances of farms from houses

Time period between depopulation and repopulation

Sanitation

http://www.fda.gov/Food/ GuidanceComplianceRegulatoryInformation/ GuidanceDocuments/FoodSafety/ucm222469.htm

78

Poultry Processing

Scald tank

- Counter current water flow
- °Temp >50°C
- Sanitizers (limited selection)
- Chill tanks
- •50 ppm chlorine pH 7 (Only in US)
- Counter-flow
- Fresh water recharging
- · Air chilling using ozone

79

Carcass Decontamination Methods

Hot water wash: 75-80°C 1-3 log reduction Salmonella

Steam pasteurization: 90°C for 12s 3 log reduction in

Salmonella

Organic acid wash: 2 % lactate 5 log reduction

Ozonated water: negligible efficacy

Irradiation: Salmonella more sensitive than E. coli D 0.62-0.80.

80

A Webber Training Teleclass

Bacteriophages

- Viruses that infect bacteria
- Specific to Broad host range
- Extensively used in Eastern Europe
- High doses required (MOI)
- •Natural equilibrium establishes between host and phage
- •Replication in the environment limited
- Resistance
- •Possible route to control Salmonella in lymph nodes

81

Hide/Skin Treatment

Surface	Target	МОІ	Log Reduction	Reference
Cattle Hide	E. coli O157	10,000	1.5	Coffey et al., 2003
Poultry	Campylobacter	100, 000	2.0	Goode et al 2003
Poultry	Pseudomonas	1000	2.0	Greer, 1982
Pig skin	Salmonella	10	4.0	Hotton et al., 2011

82

A Webber Training Teleclass

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Ozone Gas (2000ppm) Chilling

Wave 6000 /55 L - 420 L

Maximum pressure: 600 MPa

Pressure Hold Time: 3 min

Toll facilities

Lab and industrial

0.1L - 2L100 L - 687 L

Toll facilities

Sampling and Detection

89

Sampling and Detection

Egg sampling (composite)

Carcass sampling (Carcass rinse)

90

A Webber Training Teleclass

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

A Webber Training Teleclass

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

A Webber Training Teleclass

SureTect Salmonella

RT-PCR identification

AOAC approved

Single enrichment

Inclusivity and exclusivity
20 mins analysis time

۵5

Modular PCR Cyclers

Large Sample throughput

Low cost

Time to Detection

Combine IMS with PCR

96

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

Isothermal Amplification

Simplified equipment: No need for thermal cycling Adaptable to miniaturization

DNA Typing

Track origins of *Salmonella*Identify endemic populations
Link between contamination sources
Surveillance

100

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

PathoGenetix's Genome Sequence Scanning

10 million bases per second

5 h assay (40 samples per 24 h)

No specific target pathogen

Current being evaluated by CDC (\$40m project)

103

Consumer Education

Sanitation

Food storage

Minimize cross-contamination events

Thermometers to verify adequate cooking

106

Food Standards Agency UK

Don't wash chicken

Coordinated media campaign

- Public health units
- TV
- News outlets
- Twitter
- Facebook
- National and International

>20 million goggle hits Simple message but reinforced

107

Conclusions

Salmonella remains a key foodborne pathogen

Adaptable and high virulence

Broad range of food types affected

Multi-drug resistance needs to be addressed

Interventions and diagnostics available

Is FSIS Strategic Plan going to work?

Can Salmonella be eliminated?

108

A Webber Training Teleclass

November 17 (FREE British Teleclass ... Denver Russell Memorial Teleclass Lecture)

THE ROLE OF WATER AS A VECTOR IN THE TRANSMISSION OF INFECTIONS IN HOSPITALS

Dr. Jimmy Walker, Public Health England, Biosafety Unit

November 19 CLOSTRIDIUM DIFFICILE INFECTION IN RURAL HOSPITALS

Dr. Nasia Safdar, University of Wisconsin

December 3 (FREE Teleclass)

HIV TREATMENT AS PREVENTION: THE KEY TO AN AIDS-FREE GENERATION

Prof. Julio S. G. Montaner, BC Centre for Excellence in HIV/AIDS

December 10 RISING TO THE CHALLENGE OF MULTIDRUG-RESISTANT GRAM-NEGATIVE RODS (CRE & FRIENDS)

Dr. Jonathan Otter, King's College, London

www.webbertraining.com/schedulep1.php

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

A Webber Training Teleclass

Thanks to Teleclass Education

PATRON SPONSORS

