Utilization of Methylglyoxal in Manuka Honey to Reduce S. aureus Colonisation in the Nasal Vestibule
Julian Ketel, Waiariki Institute of Technology, New Zealand
A Webber Training Teleclass

Utilization of methylglyoxal in Manuka honey to reduce S. aureus colonisation in the nasal vestibule

Julian Ketel
Waiariki Institute of Technology
New Zealand

Hosted by Jane Barnett
jane@webbertraining.com

Acknowledgements

Dr Linda Peters (Waikato University)
Dr Lynne Chepulis (Waiariki Institute of Technology)
Dr Ray Cursons (Waikato University)
Prof. Peter Molan
Kerry Allen

Dr Mandy Suddes (Manuka Health)
Waiariki Institute of Technology

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com
Utilization of Methylglyoxal in Manuka Honey to Reduce *S. aureus* Colonisation in the Nasal Vestibule
Julian Ketel, Wairariki Institute of Technology, New Zealand
A Webber Training Teleclass

Introduction

- Preventing infection/bacteraemia by *Staphylococcus aureus/MRSA*
- Nasal carriage and infection
- Honey, methylglyoxal, and Manuka Cyclopower™
- Results of study so far and “building beyond”

Nasal Carriage and Infection

- Link initially identified in 1931 by Danbolt (Wertheim et al., 2005)
- A sample of papers since then:
 - Tulloch (1954) – nasal carriage and skin lesions
 - White (1963) – correlation between carriage volume and infection
 - Solberg (1965) – nasal carriage and dispersal to hands/environment
 - Stenehjem and Rimland (2013) – nasal carriage risk factor for MRSA infection

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com
Utilization of Methylglyoxal in Manuka Honey to Reduce *S. aureus* Colonisation in the Nasal Vestibule
Julian Ketel, Waiariki Institute of Technology, New Zealand
A Webber Training Teleclass

MRSA

- Similar infections
- Resistance to treatment (Heffernan, Bakker, Dyet, & Williamson, 2015).
- Fusidic acid 21.8% & Mupirocin 8.7% (14.2% 1999) (Heffernan, Bakker, Woodhouse, Dyet, & Williamson, 2015)

Infection with *S. aureus*

- What does this really mean to you?
- Boils, ‘school sores’, impetigo, carbuncles, purulent pimple?
- Morbidity?
- Mortality?

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com
Utilization of Methylglyoxal in Manuka Honey to Reduce *S. aureus* Colonisation in the Nasal Vestibule
Julian Ketel, Wairariki Institute of Technology, New Zealand
A Webber Training Teleclass

Pre-antibiotic era Consequences
[Skeirn & Keefer, 1941]

Case 47.—A boy aged 8 was well until six days before death, when he became acutely ill with high, irregular fever and pain in the groin. There were no localized signs of infection, but a culture of the blood was positive for staphylococci. Death occurred two days after admission to the hospital (fig. 3). Necropsy showed multiple abscesses of the myocardium, spleen and pancreas, without any other lesions.

Case 13.—In a man aged 46, who had a carbuncle on the back of the neck, a chill suddenly developed, with a high, remittent fever and signs of bronchopneumonia and stupor. The course of his illness was one of progressive failure, with death occurring six days after the onset of the infection. Necropsy showed a carbuncle of the neck and multiple abscesses of the brain, liver and kidneys.

Case 44.—In a boy aged 14 the signs of acute osteomyelitis of the right tibia developed, with high, remittent fever and bacteremia. Foci of osteomyelitis subsequently developed in the humerus and metatarsal bones, and the blood stream was cleared of bacteria. The foci of osteomyelitis were drained, and the patient recovered after an illness of three hundred and twenty-eight days (fig. 5).

Honey – what is it?

- Nectar from plants (usually floral).
 - 25mg nectar in crop/honey stomach
 - Gland secretion – enzymes
 - Transfer to house bee → honeycomb
 - Sucrose to fructose and glucose
 - Evaporation of water
 - Honey in 1-3 days.

(Ball, 2007)

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com
Utilization of Methylglyoxal in Manuka Honey to Reduce *S. aureus* Colonisation in the Nasal Vestibule

Julian Ketel, Wairariki Institute of Technology, New Zealand

A Webber Training Teleclass

Honey - history

- Van Ketel (1892) – first scientific reference to lack of growth on agar plates.
- Sackett (1919) – honey as a carrier of intestinal disease, growth inhibited, so unlikely to be a carrier.

Honey - activity

- Osmotic effect
- Acidity (pH 3.9)
- Hydrogen peroxide
- Bee defensin-1
- Methylglyoxal – Slow conversion, within manuka honey, of dihydroxyacetone in the nectar of Manuka (*L. scoparium*).
Methylglyoxal (MGO)

- Appears to inhibit/affect DNA, RNA, and protein synthesis (Krymkiewicz, Dieguez, Rekarte, & Zwaig, 1971).
- MGO aka UMF component of Manuka honeys.

Manuka Cyclopower™ (MCP)

- MGO can be readily degraded, stabilising possible
- Manuka honey mixed with α-cyclodextrin (45%/55%). forms an off white powder.
- α-cyclodextrine molecule contains the MGO in the hydrophobic centre (Swift, Chepulis, Uy, & Radcliff, 2014).
Utilization of Methylglyoxal in Manuka Honey to Reduce *S. aureus* Colonisation in the Nasal Vestibule
Julian Ketel, Waiariki Institute of Technology, New Zealand
A Webber Training Teleclass

Experiment – Overall aim

- To identify if Manuka cyclopowertm could be made into a cream for use in the nasal vestibule/anterior nares
- To compare a sample of Manuka cyclopowertm with the source honey.

Exp 1 – Zones of Inhibition
Utilization of Methylglyoxal in Manuka Honey to Reduce *S. aureus* Colonisation in the Nasal Vestibule
Julian Ketel, Waiariki Institute of Technology, New Zealand
A Webber Training Teleclass

Experiment – MTT assay

Growth Inhibition - Spectrophotometry

- Before and after incubation readings

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com
Utilization of Methylglyoxal in Manuka Honey to Reduce *S. aureus* Colonisation in the Nasal Vestibule
Julian Ketel, Wairariki Institute of Technology, New Zealand
A Webber Training Teleclass

Growth Inhibition - Spectrophotometry

![Graph showing growth inhibition over time with varying concentrations of substances.]

Bacterial Inhibition – Plating – Initial findings

<table>
<thead>
<tr>
<th>Source culture</th>
<th>10% Manuka Cyclopower™</th>
<th>10% Manuka honey</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁶/ml (n=12)</td>
<td>10⁵/ml (n=9)</td>
<td>10⁴/ml (n=11)</td>
</tr>
</tbody>
</table>

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com
Where to next?

- Consolidate/Repeat Data
- Further invivo work. Animal studies
 - What activity on mucous membranes?
 - Possible additional topical options?
- Clinical trial
- Other roles for MCP

So where does this leave IPC?

- “Infection control refers to a range of practices and procedures designed to minimise the risk of spreading infections, especially in hospitals and health care facilities”

 (Controller and Auditor-General, 2003)

- What and How we Do

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com
Utilization of Methylglyoxal in Manuka Honey to Reduce S. aureus Colonisation in the Nasal Vestibule
Julian Ketel, Waiairi Institute of Technology, New Zealand
A Webber Training Teleclass

Personal Thoughts

Examples: The Physics of flying Feces
Jim Gauthier: 9 November 2006
Behaviour & Infection Control
Prof. Andreas Voss: 8 February 2012

References

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com
Utilization of Methylglyoxal in Manuka Honey to Reduce S. aureus Colonisation in the Nasal Vestibule
Julian Ketel, Wairariki Institute of Technology, New Zealand

A Webber Training Teleclass

References

Utilization of Methylglyoxal in Manuka Honey to Reduce *S. aureus* Colonisation in the Nasal Vestibule
Julian Ketel, Waiariki Institute of Technology, New Zealand
A Webber Training Teleclass

Thanks for your support

Thanks to Teleclass Education
Patron Sponsors

[Sealed Air](www.sealedair.com)
[VIROX](www.virox.com)
[World Health Organization](www.who.int/gpsc/en)

Hosted by Jane Barnett, jane@webbertraining.com
www.webbertraining.com